Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
- URL: http://arxiv.org/abs/2408.00619v2
- Date: Tue, 8 Oct 2024 14:13:38 GMT
- Title: Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
- Authors: Ruiyang Zhang, Hu Zhang, Hang Yu, Zhedong Zheng,
- Abstract summary: Unsupervised 3D object detection aims to identify objects of interest from unlabeled raw data, such as LiDAR points.
Recent approaches usually adopt pseudo 3D bounding boxes (3D bboxes) from clustering algorithm to initialize the model training.
We introduce a new uncertainty-aware framework for unsupervised 3D object detection, dubbed UA3D.
- Score: 22.297964850282177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised 3D object detection aims to identify objects of interest from unlabeled raw data, such as LiDAR points. Recent approaches usually adopt pseudo 3D bounding boxes (3D bboxes) from clustering algorithm to initialize the model training. However, pseudo bboxes inevitably contain noise, and such inaccuracies accumulate to the final model, compromising the performance. Therefore, in an attempt to mitigate the negative impact of inaccurate pseudo bboxes, we introduce a new uncertainty-aware framework for unsupervised 3D object detection, dubbed UA3D. In particular, our method consists of two phases: uncertainty estimation and uncertainty regularization. (1) In the uncertainty estimation phase, we incorporate an extra auxiliary detection branch alongside the original primary detector. The prediction disparity between the primary and auxiliary detectors could reflect fine-grained uncertainty at the box coordinate level. (2) Based on the assessed uncertainty, we adaptively adjust the weight of every 3D bbox coordinate via uncertainty regularization, refining the training process on pseudo bboxes. For pseudo bbox coordinate with high uncertainty, we assign a relatively low loss weight. Extensive experiments verify that the proposed method is robust against the noisy pseudo bboxes, yielding substantial improvements on nuScenes and Lyft compared to existing approaches, with increases of +6.9% AP$_{BEV}$ and +2.5% AP$_{3D}$ on nuScenes, and +4.1% AP$_{BEV}$ and +2.0% AP$_{3D}$ on Lyft.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Confidence-driven Bounding Box Localization for Small Object Detection [30.906712428887147]
We present Confidence-driven Bounding Box localization (C-BBL) method to rectify the gradients.
C-BBL quantizes continuous labels into grids and formulates two-hot ground truth labels.
We demonstrate the generalizability of C-BBL to different label systems and effectiveness for high resolution detection.
arXiv Detail & Related papers (2023-03-03T09:19:08Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
Uncertainty-based active learning policies fail to balance the trade-off between point cloud informativeness and box-level annotation costs.
We propose textscCrb, which hierarchically filters out the point clouds of redundant 3D bounding box labels.
Experiments show that the proposed approach outperforms existing active learning strategies.
arXiv Detail & Related papers (2023-01-23T02:43:03Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
Uncertainty helps us tackle the error in the perception system and improve robustness.
We propose a method for improving target tracking performance by adding uncertainty regression to the SECOND detector.
arXiv Detail & Related papers (2020-11-04T21:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.