Online Detection of Anomalies in Temporal Knowledge Graphs with Interpretability
- URL: http://arxiv.org/abs/2408.00872v2
- Date: Mon, 2 Sep 2024 17:41:24 GMT
- Title: Online Detection of Anomalies in Temporal Knowledge Graphs with Interpretability
- Authors: Jiasheng Zhang, Rex Ying, Jie Shao,
- Abstract summary: AnoT is an efficient TKG summarization method tailored for interpretable online anomaly detection in temporal knowledge graphs.
Experimental results on four real-world datasets demonstrate that AnoT surpasses existing methods significantly in terms of accuracy and interoperability.
- Score: 19.457465167667287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal knowledge graphs (TKGs) are valuable resources for capturing evolving relationships among entities, yet they are often plagued by noise, necessitating robust anomaly detection mechanisms. Existing dynamic graph anomaly detection approaches struggle to capture the rich semantics introduced by node and edge categories within TKGs, while TKG embedding methods lack interpretability, undermining the credibility of anomaly detection. Moreover, these methods falter in adapting to pattern changes and semantic drifts resulting from knowledge updates. To tackle these challenges, we introduce AnoT, an efficient TKG summarization method tailored for interpretable online anomaly detection in TKGs. AnoT begins by summarizing a TKG into a novel rule graph, enabling flexible inference of complex patterns in TKGs. When new knowledge emerges, AnoT maps it onto a node in the rule graph and traverses the rule graph recursively to derive the anomaly score of the knowledge. The traversal yields reachable nodes that furnish interpretable evidence for the validity or the anomalous of the new knowledge. Overall, AnoT embodies a detector-updater-monitor architecture, encompassing a detector for offline TKG summarization and online scoring, an updater for real-time rule graph updates based on emerging knowledge, and a monitor for estimating the approximation error of the rule graph. Experimental results on four real-world datasets demonstrate that AnoT surpasses existing methods significantly in terms of accuracy and interoperability. All of the raw datasets and the implementation of AnoT are provided in https://github.com/zjs123/ANoT.
Related papers
- Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs [5.415950005432774]
We propose a novel GAD framework (EL$2$-DGAD) to tackle anomaly detection problem in dynamic graphs with extremely limited labels.
Specifically, a transformer-based graph encoder model is designed to more effectively preserve evolving graph structures beyond the local neighborhood.
arXiv Detail & Related papers (2025-01-25T02:35:48Z) - TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph [5.3620586848260015]
Advanced Persistent Threat (APT) have grown increasingly complex and concealed.
Recent studies have incorporated graph learning techniques to extract detailed information from provenance graphs.
We introduce TFLAG, an advanced anomaly detection framework.
arXiv Detail & Related papers (2025-01-13T01:08:06Z) - SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning [24.41015179377796]
We propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams.
In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods.
arXiv Detail & Related papers (2024-02-19T08:19:26Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Open-Set Graph Anomaly Detection via Normal Structure Regularisation [30.638274744518682]
Open-set Graph Anomaly Detection (GAD) aims to train a detection model using a small number of normal and anomaly nodes.
Current supervised GAD methods tend to over-emphasise fitting the seen anomalies, leading to many errors of detecting the unseen anomalies as normal nodes.
We propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to achieve generalised detection ability to unseen anomalies.
arXiv Detail & Related papers (2023-11-12T13:25:28Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
Temporal KGs (TKGs) extend traditional Knowledge Graphs by associating static triples with timestamps forming quadruples.
We propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs.
We show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation.
arXiv Detail & Related papers (2023-02-11T09:52:26Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.