論文の概要: Multi-Aspect Reviewed-Item Retrieval via LLM Query Decomposition and Aspect Fusion
- arxiv url: http://arxiv.org/abs/2408.00878v1
- Date: Thu, 01 Aug 2024 19:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 18:50:06.126042
- Title: Multi-Aspect Reviewed-Item Retrieval via LLM Query Decomposition and Aspect Fusion
- Title(参考訳): LLMクエリ分解とアスペクト融合によるマルチアスペクトレビュー項目検索
- Authors: Anton Korikov, George Saad, Ethan Baron, Mustafa Khan, Manav Shah, Scott Sanner,
- Abstract要約: 本稿では,自然言語製品クエリに対処する新しいアスペクト融合戦略を提案する。
不均衡なレビューコーパスでは、AF は MAP@10 を 0.36 から 0.52 に増加させ、バランスの取れたレビューコーパスに対して同等のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 15.630734768499826
- License:
- Abstract: While user-generated product reviews often contain large quantities of information, their utility in addressing natural language product queries has been limited, with a key challenge being the need to aggregate information from multiple low-level sources (reviews) to a higher item level during retrieval. Existing methods for reviewed-item retrieval (RIR) typically take a late fusion (LF) approach which computes query-item scores by simply averaging the top-K query-review similarity scores for an item. However, we demonstrate that for multi-aspect queries and multi-aspect items, LF is highly sensitive to the distribution of aspects covered by reviews in terms of aspect frequency and the degree of aspect separation across reviews. To address these LF failures, we propose several novel aspect fusion (AF) strategies which include Large Language Model (LLM) query extraction and generative reranking. Our experiments show that for imbalanced review corpora, AF can improve over LF by a MAP@10 increase from 0.36 to 0.52, while achieving equivalent performance for balanced review corpora.
- Abstract(参考訳): ユーザ生成製品レビューには大量の情報が含まれていることが多いが、自然言語製品クエリーに対処する実用性は限られており、検索中に複数の低レベルソース(リビュー)からより高いアイテムレベルまで情報を集約する必要があることが大きな課題となっている。
既存のRIR(Reviewed-item Search)の手法では、アイテムの上位Kクエリ-レビュー類似度スコアを単に平均化することで、クエリ-itemスコアを計算する後期融合(LF)アプローチが一般的である。
しかし,マルチアスペクトクエリやマルチアスペクトアイテムの場合,LFはアスペクト周波数やアスペクト分離の程度の観点から,レビューによってカバーされるアスペクトの分布に非常に敏感であることを示す。
これらのLF障害に対処するために,Large Language Model (LLM) クエリ抽出とジェネレーティブリグレードを含む,いくつかの新しいアスペクト融合(AF)戦略を提案する。
実験の結果,不均衡なレビューコーパスではMAP@10が0.36から0.52に向上し,バランスの取れたレビューコーパスに対して同等の性能が得られた。
関連論文リスト
- Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
本研究は,データ融合実験において,命令調整型大規模言語モデルによって生成される合成クエリ変種を用いることの実現可能性について検討する。
我々は、プロンプトとデータ融合の原則を生かした、軽量で教師なしで費用効率のよいアプローチを導入します。
解析の結果,合成クエリの変種に基づくデータ融合は,単一クエリのベースラインよりもはるかに優れており,擬似関連フィードバック手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-06T12:54:27Z) - LFOSum: Summarizing Long-form Opinions with Large Language Models [7.839083566878183]
本稿では,(1)長文ユーザレビューの新しいデータセット,(1)1000以上のレビューを含むエンティティ,(2)長期入力にスケールする2つのトレーニングフリーLCMベースの要約アプローチ,(3)自動評価指標を紹介する。
ユーザレビューのデータセットは、ドメインの専門家による詳細な、偏見のない批判的な要約と組み合わせられ、評価の基準として役立ちます。
我々の評価では、LLMは長文要約における感情と形式順守のバランスをとる上で依然として課題に直面しているが、オープンソースモデルでは、関連する情報が集中的に検索される場合のギャップを狭めることができる。
論文 参考訳(メタデータ) (2024-10-16T20:52:39Z) - LINKAGE: Listwise Ranking among Varied-Quality References for Non-Factoid QA Evaluation via LLMs [61.57691505683534]
非F (Non-Factoid) Question Answering (QA) は多種多様な潜在的回答と客観的基準により評価が困難である。
大規模言語モデル (LLM) は、様々なNLPタスクにおいて魅力的な性能を持つため、NFQAの評価に利用されてきた。
提案手法は,LLMを用いて基準回答のランク付けを行う新しい評価手法であるNFQAの評価手法を提案する。
論文 参考訳(メタデータ) (2024-09-23T06:42:21Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
グラウンデッドジェネレーションは、言語モデル(LM)に、より信頼性が高く説明可能な応答を生成する能力を持たせることを目的としている。
本稿では,新しい検証フレームワークであるCaLMを紹介する。
我々のフレームワークは、より少ないパラメトリックメモリに依存する小さなLMを有効活用し、より大きなLMの出力を検証する。
論文 参考訳(メタデータ) (2024-06-08T06:04:55Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
検索クエリに対する検索および再ランクされたアイテムの高い関連性は、製品検索の成功の土台である。
本稿では,大規模言語モデル(LLM)を活用して,クエリ・イテムペア(QIP)の関連判断を大規模に自動化する手法について述べる。
本研究は,製品検索における関連判断の自動化の分野への直接的な影響を示唆するものである。
論文 参考訳(メタデータ) (2024-06-01T00:52:41Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - Self-Supervised Contrastive BERT Fine-tuning for Fusion-based
Reviewed-Item Retrieval [12.850360384298712]
我々は、クエリをドキュメントにマッチさせるニューラルネットワーク検索(IR)手法を、項目をレビューするタスクに拡張する。
我々は,クエリとレビューの両方に対して,BERT埋め込みのコントラスト学習に自己教師付き手法を用いる。
レイトフュージョンのシナリオにおける対照的な学習について、同じ項目および/または同じ評価の正のレビューサンプルの使用について検討する。
よりエンドツーエンドのEarly Fusionアプローチでは、レビューを単一項目の埋め込みに融合するために、対照的なアイテム埋め込み学習を導入します。
論文 参考訳(メタデータ) (2023-08-01T18:01:21Z) - LoL: A Comparative Regularization Loss over Query Reformulation Losses
for Pseudo-Relevance Feedback [70.44530794897861]
Pseudo-Relevance feedback (PRF) は、検索精度を向上させるための効果的なクエリ修正手法であることが証明されている。
既存のPRF手法は、同じクエリから派生した修正クエリを個別に扱うが、異なる数のフィードバックドキュメントを使用する。
そこで我々はLos-over-Loss(LoL)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-25T10:42:50Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
論文 参考訳(メタデータ) (2020-04-06T22:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。