論文の概要: Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks
- arxiv url: http://arxiv.org/abs/2408.00985v1
- Date: Fri, 2 Aug 2024 03:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:36:49.820122
- Title: Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks
- Title(参考訳): 低次元特徴と注目型ニューラルネットワークを用いたノイズラジオグラフィーからのRichtmyer-Meshkov不安定性の再構築
- Authors: Daniel A. Serino, Marc L. Klasky, Balasubramanya T. Nadiga, Xiaojian Xu, Trevor Wilcox,
- Abstract要約: トレーニングされた注意に基づくトランスフォーマーネットワークは、Richtmyer-Meshkoff不安定性によって与えられる複雑なトポロジーを確実に回復することができる。
このアプローチは、ICFのような二重貝殻流体力学シミュレーションで実証される。
- 参考スコア(独自算出の注目度): 3.6270672925388263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A trained attention-based transformer network can robustly recover the complex topologies given by the Richtmyer-Meshkoff instability from a sequence of hydrodynamic features derived from radiographic images corrupted with blur, scatter, and noise. This approach is demonstrated on ICF-like double shell hydrodynamic simulations. The key component of this network is a transformer encoder that acts on a sequence of features extracted from noisy radiographs. This encoder includes numerous self-attention layers that act to learn temporal dependencies in the input sequences and increase the expressiveness of the model. This approach is demonstrated to exhibit an excellent ability to accurately recover the Richtmyer-Meshkov instability growth rates, even despite the gas-metal interface being greatly obscured by radiographic noise.
- Abstract(参考訳): 訓練された注意に基づくトランスフォーマーネットワークは、ブラー、散乱、ノイズで劣化した放射線画像から得られた一連の流体力学的特徴から、リッチマイア・メシュコフ不安定によって与えられる複雑なトポロジーを確実に回復することができる。
このアプローチは、ICFのような二重貝殻流体力学シミュレーションで実証される。
このネットワークの重要なコンポーネントは、ノイズの多いラジオグラフから抽出された一連の特徴に作用するトランスフォーマーエンコーダである。
このエンコーダは、入力シーケンスにおける時間的依存関係を学習し、モデルの表現性を高めるために作用する多数の自己注意層を含む。
この手法は, ガス-金属界面がラジオグラフィーノイズによって著しく隠蔽されているにもかかわらず, リヒトマイアー-メシュコフ不安定性成長速度を正確に回復する優れた能力を示すことが示されている。
関連論文リスト
- Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators [83.48423407316713]
本稿では,クエリとキーを別々に扱うために,追加の仲介者トークンを組み込んだ新しい拡散トランスフォーマーフレームワークを提案する。
本モデルでは, 正確な非曖昧な段階を呈し, 詳細に富んだ段階へと徐々に遷移する。
本手法は,最近のSiTと統合した場合に,最先端のFIDスコア2.01を達成する。
論文 参考訳(メタデータ) (2024-08-11T07:01:39Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - GAN-driven Electromagnetic Imaging of 2-D Dielectric Scatterers [4.510838705378781]
逆散乱問題は、それらが不適切で非線形であるという事実を考えると、本質的に困難である。
本稿では、生成的対向ネットワークに依存する強力なディープラーニングに基づくアプローチを提案する。
適切に設計された高密度層からなる凝集性逆ニューラルネットワーク(INN)フレームワークが設定される。
トレーニングされたINNは、平均2進クロスエントロピー(BCE)損失が0.13ドル、構造類似度指数(SSI)が0.90ドルであることを示す。
論文 参考訳(メタデータ) (2024-02-16T17:03:08Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
位相検索は、計算画像および画像処理における非線型逆問題である。
我々は,1次反復しきい値しきい値アルゴリズム(ISTA)に基づく深層展開ネットワークであるPRISTA-Netを開発した。
非線形変換,しきい値,ステップサイズなど,提案するPRISTA-Netフレームワークのパラメータはすべて,設定されるのではなく,エンドツーエンドで学習される。
論文 参考訳(メタデータ) (2023-09-08T07:37:15Z) - Unlocking Fine-Grained Details with Wavelet-based High-Frequency
Enhancement in Transformers [4.208461204572879]
医用画像のセグメンテーションは、診断、治療計画、疾患モニタリングにおいて重要な役割を担っている。
本稿では,自己注意マップを慎重に再設計することで,トランスフォーマーモデルの局所的特徴不足に対処する。
そこで本研究では,マルチスケールのコンテキスト拡張ブロックをスキップ接続内で提案し,スケール間の依存関係を適応的にモデル化する。
論文 参考訳(メタデータ) (2023-08-25T15:42:19Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
ニューラル画像圧縮ネットワークは、エントロピーモデルが潜在コードの真の分布とどの程度うまく一致しているかによって制御される。
本稿では,緩和されたスカラー量子化が低ビットレートを実現するのに役立つ特徴レベルの周波数歪みを提案する。
提案するネットワークは,手作業によるコーデックだけでなく,空間的自己回帰エントロピーモデル上に構築されたニューラルネットワークベースのコーデックよりも優れている。
論文 参考訳(メタデータ) (2023-08-04T14:55:44Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - A Neural-Network-Based Convex Regularizer for Inverse Problems [14.571246114579468]
画像再構成問題を解決するためのディープラーニング手法は、再構築品質を大幅に向上させた。
これらの新しい手法は信頼性と説明性に欠けることが多く、これらの欠点に対処する関心が高まっている。
本研究では,凸リッジ関数の和である正則化器を再検討することにより,この問題に対処する。
このような正規化器の勾配は、活性化関数が増加し学習可能な単一の隠蔽層を持つニューラルネットワークによってパラメータ化される。
論文 参考訳(メタデータ) (2022-11-22T18:19:10Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。