論文の概要: Analysis of Parameterized Quantum Circuits: on The Connection Between Expressibility and Types of Quantum Gates
- arxiv url: http://arxiv.org/abs/2408.01036v2
- Date: Fri, 9 Aug 2024 06:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 17:59:25.721842
- Title: Analysis of Parameterized Quantum Circuits: on The Connection Between Expressibility and Types of Quantum Gates
- Title(参考訳): パラメタライズド量子回路の解析--表現性と量子ゲートの種類との関係から-
- Authors: Yu Liu, Kentaro Baba, Kazuya Kaneko, Naoyuki Takeda, Junpei Koyama, Koichi Kimura,
- Abstract要約: 等化量子回路(PQC)の表現性は重要な要素である
本稿では,PQC内の表現可能性と量子ゲートの型との関係を解析する。
分析の結果から,高表現能PQCの設計指針が得られた。
- 参考スコア(独自算出の注目度): 2.527892855172764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expressibility is a crucial factor of a Parameterized Quantum Circuit (PQC). In the context of Variational Quantum Algorithms (VQA) based Quantum Machine Learning (QML), a QML model composed of highly expressible PQC and sufficient number of qubits is theoretically capable of approximating any arbitrary continuous function. While much research has explored the relationship between expressibility and learning performance, as well as the number of layers in PQCs, the connection between expressibility and PQC structure has received comparatively less attention. In this paper, we analyze the connection between expressibility and the types of quantum gates within PQCs using a Gradient Boosting Tree model and SHapley Additive exPlanations (SHAP) values. Our analysis is performed on 1,615 instances of PQC derived from 19 PQC topologies, each with 2-18 qubits and 1-5 layers. The findings of our analysis provide guidance for designing highly expressible PQCs, suggesting the integration of more RX or RY gates while maintaining a careful balance with the number of CNOT gates. Furthermore, our evaluation offers an additional evidence of expressibility saturation, as observed by previous studies.
- Abstract(参考訳): 表現性はパラメータ化量子回路(PQC)の重要な要素である。
変分量子アルゴリズム(VQA)に基づく量子機械学習(QML)の文脈では、高表現能なPQCと十分な数の量子ビットからなるQMLモデルは任意の連続関数を近似することができる。
表現可能性と学習性能の関係やPQCの層数について多くの研究が行われてきたが、表現性とPQC構造との関係は比較的少ない。
本稿では、勾配ブースティングツリーモデルとSHAP(SHapley Additive ExPlanations)の値を用いて、PQC内の表現可能性と量子ゲートのタイプとの関係を解析する。
解析は19個のPQCトポロジから導出された1,615個のPQCに対して行われ,それぞれ2-18量子ビットと1-5層からなる。
分析の結果,高表現能なPQCの設計指針が得られ,CNOTゲート数と注意的バランスを維持しつつ,より多くのRXゲートやRYゲートの統合が示唆された。
さらに, この評価は, 従来研究で見られたように, 表現性飽和の新たな証拠となる。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits [16.460585387762478]
量子ニューラルネットワークの有望なアプローチとして、PQC(ized quantum circuits)が登場した。
本稿では,一般関数クラスを近似するためのPQCの表現性について検討する。
我々は、量子ビット数、量子回路深さ、およびトレーニング可能なパラメータ数の観点から、これらの関数に対する最初の非漸近近似誤差境界を確立する。
論文 参考訳(メタデータ) (2023-10-11T14:29:11Z) - Predicting Expressibility of Parameterized Quantum Circuits using Graph
Neural Network [5.444441239596186]
量子回路(PQC)の表現性を予測するためのグラフニューラルネットワーク(GNN)に基づく新しい手法を提案する。
グラフに基づくPQC表現を活用することで、GNNベースのモデルは、回路パラメータと結果の表現性の間の複雑な関係をキャプチャする。
4千個のランダムPQCデータセットとIBM Qiskitのハードウェア効率の良いアンサッツセットの実験評価により、我々のアプローチの優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-13T14:08:01Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
変分量子アルゴリズム(VQA)とそのパラメタライズド量子回路(PQC)による量子機械学習分野への応用は、ノイズの多い中間スケール量子コンピューティングデバイスを活用する主要な方法の1つであると考えられている。
本稿では、Schuldらによる研究に基づいて、学習能力の新たな尺度を用いて、PQCの一般的なアンス・アゼと比較する。
また,Beerらが導入した分散量子ニューラルネットワーク(dQNN)についても検討し,その学習能力を高めるために,dQNNのデータ再アップロード構造を提案する。
論文 参考訳(メタデータ) (2022-09-21T13:26:20Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - A Convergence Theory for Over-parameterized Variational Quantum
Eigensolvers [21.72347971869391]
変分量子固有解法(VQE)は、近未来のノイズ中間規模量子(NISQ)コンピュータにおける量子応用の有望な候補である。
オーバーパラメータ化系におけるVQEの収束の厳密な分析を行った。
論文 参考訳(メタデータ) (2022-05-25T04:06:50Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。