論文の概要: Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits
- arxiv url: http://arxiv.org/abs/2310.07528v2
- Date: Tue, 08 Oct 2024 16:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:29:03.064912
- Title: Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits
- Title(参考訳): 量子回路の非漸近近似誤差境界
- Authors: Zhan Yu, Qiuhao Chen, Yuling Jiao, Yinan Li, Xiliang Lu, Xin Wang, Jerry Zhijian Yang,
- Abstract要約: 量子ニューラルネットワークの有望なアプローチとして、PQC(ized quantum circuits)が登場した。
本稿では,一般関数クラスを近似するためのPQCの表現性について検討する。
我々は、量子ビット数、量子回路深さ、およびトレーニング可能なパラメータ数の観点から、これらの関数に対する最初の非漸近近似誤差境界を確立する。
- 参考スコア(独自算出の注目度): 16.460585387762478
- License:
- Abstract: Parameterized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks. However, understanding their expressive power in accomplishing machine learning tasks remains a crucial question. This paper investigates the expressivity of PQCs for approximating general multivariate function classes. Unlike previous Universal Approximation Theorems for PQCs, which are either nonconstructive or rely on parameterized classical data processing, we explicitly construct data re-uploading PQCs for approximating multivariate polynomials and smooth functions. We establish the first non-asymptotic approximation error bounds for these functions in terms of the number of qubits, quantum circuit depth, and number of trainable parameters. Notably, we demonstrate that for approximating functions that satisfy specific smoothness criteria, the quantum circuit size and number of trainable parameters of our proposed PQCs can be smaller than those of deep ReLU neural networks. We further validate the approximation capability of PQCs through numerical experiments. Our results provide a theoretical foundation for designing practical PQCs and quantum neural networks for machine learning tasks that can be implemented on near-term quantum devices, paving the way for the advancement of quantum machine learning.
- Abstract(参考訳): 量子化量子回路(PQC)は、量子ニューラルネットワークの有望なアプローチとして登場した。
しかし、機械学習タスクの達成における表現力を理解することは、依然として重要な問題である。
本稿では,一般多変量関数クラスを近似するためのPQCの表現性について検討する。
非構成的あるいはパラメータ化された古典的データ処理に依存したPQCの以前のUniversal Approximation Theoremsとは異なり、多変量多項式と滑らかな関数を近似するためのPQCの再ロードデータを明示的に構築する。
我々は、量子ビット数、量子回路深さ、およびトレーニング可能なパラメータ数の観点から、これらの関数に対する最初の非漸近近似誤差境界を確立する。
特に、特定の滑らか度基準を満たす関数を近似するために、提案したPQCの量子回路サイズとトレーニング可能なパラメータの数は、深いReLUニューラルネットワークよりも小さくできることを示す。
さらに,PQCの近似能力を数値実験により検証した。
この結果は、短期量子デバイス上で実装可能な機械学習タスクのための実用的なPQCや量子ニューラルネットワークを設計するための理論的基盤を提供し、量子機械学習の進歩への道を開いた。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Predicting Expressibility of Parameterized Quantum Circuits using Graph
Neural Network [5.444441239596186]
量子回路(PQC)の表現性を予測するためのグラフニューラルネットワーク(GNN)に基づく新しい手法を提案する。
グラフに基づくPQC表現を活用することで、GNNベースのモデルは、回路パラメータと結果の表現性の間の複雑な関係をキャプチャする。
4千個のランダムPQCデータセットとIBM Qiskitのハードウェア効率の良いアンサッツセットの実験評価により、我々のアプローチの優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-13T14:08:01Z) - Parametrized Quantum Circuits and their approximation capacities in the
context of quantum machine learning [1.3108652488669736]
パラメタライズド量子回路(パラメタライズド量子回路、PQC)は、固定ゲートとパラメタライズドゲートの両方からなる量子回路である。
PQCs は連続函数の空間、$p$可積分函数、および$Hk$ソボレフ空間を特定の距離で近似できることを示す。
論文 参考訳(メタデータ) (2023-07-27T11:43:08Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization [3.031137751464259]
回路深さの平方根に比例する各パラメータの初期領域を減少させることで、コスト勾配の最大値は、キュービット数と回路深さにほぼ逆向きに減衰することを示す。
この戦略は、特定の量子ニューラルネットワークを指数関数的に多くの局所的なミニマから保護することができる。
論文 参考訳(メタデータ) (2023-02-14T06:41:37Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。