論文の概要: MapComp: A Secure View-based Collaborative Analytics Framework for Join-Group-Aggregation
- arxiv url: http://arxiv.org/abs/2408.01246v2
- Date: Tue, 13 Aug 2024 06:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:58:40.307441
- Title: MapComp: A Secure View-based Collaborative Analytics Framework for Join-Group-Aggregation
- Title(参考訳): MapComp: グループアグリゲーションのためのセキュアなビューベースの協調分析フレームワーク
- Authors: Xinyu Peng, Feng Han, Li Peng, Weiran Liu, Zheng Yan, Kai Kang, Xinyuan Zhang, Guoxing Wei, Jianling Sun, Jinfei Liu,
- Abstract要約: MapCompは、共同分析のためのジョイングループ集約クエリを容易にする、ビューベースの新しいフレームワークである。
我々の研究は、マテリアライズドビューを使ったセキュアな協調JGAクエリを高速化する最初の取り組みである。
- 参考スコア(独自算出の注目度): 17.48700314920135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces MapComp, a novel view-based framework to facilitate join-group-aggregation (JGA) queries for collaborative analytics. Through specially crafted materialized view for join and novel design of group-aggregation (GA) protocols, MapComp removes duplicated join workload and expedites subsequent GA, improving the efficiency of JGA query execution. To support continuous data updates, our materialized view offers payload-independence feature and brings in significant efficiency improvement of view refreshing with free MPC overhead. This feature also allows further acceleration for GA, where we devised multiple novel protocols that outperform prior works. Notably, our work represents the first endeavor to expedite secure collaborative JGA queries using materialized views. Our experiments demonstrate a significant advantage of MapComp, achieving up to a 2189.9x efficiency improvement compared to the non-view based baseline when executing queries eight times.
- Abstract(参考訳): 本稿では、協調分析のための結合グループ集約(JGA)クエリを容易にするビューベースの新しいフレームワークであるMapCompを紹介する。
グループ集約(group-aggregation, GA)プロトコルの結合と新規設計のための特別に製作されたマテリアライズドビューにより、MapCompは重複したジョインのワークロードを排除し、その後のGAを高速化し、JGAクエリの実行効率を向上する。
連続的なデータ更新をサポートするため、当社のマテリアライズドビューはペイロード独立機能を提供し、無料のMPCオーバーヘッドでビューリフレッシュの大幅な効率向上を実現しています。
この機能はまた、GAのさらなる加速を可能にし、以前の作業より優れた複数の新しいプロトコルを考案しました。
特に、本研究は、マテリアライズドビューを使ったセキュアなJGAクエリを高速化する最初の取り組みである。
本実験はMapCompの大きな利点を示し,クエリを8回実行する場合の非ビューベースラインと比較して,2189.9倍の効率向上を実現した。
関連論文リスト
- SGTR+: End-to-end Scene Graph Generation with Transformer [42.396971149458324]
シーングラフ生成(SGG)は、その構成特性のため、困難な視覚的理解課題である。
これまでのほとんどの作業ではボトムアップ、2段階またはポイントベースの1段階のアプローチを採用していた。
本稿では、上記の問題に対処する新しいSGG法を提案し、そのタスクを二部グラフ構築問題として定式化する。
論文 参考訳(メタデータ) (2024-01-23T15:18:20Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
逐次推薦のための適応およびパーソナライズされたグラフ学習(APGL4SR)というグラフ駆動型フレームワークを提案する。
APGL4SRは、適応的でパーソナライズされたグローバルな協調情報をシーケンシャルレコメンデーションシステムに組み込む。
一般的なフレームワークとして、APGL4SRは大きなマージンを持つ他のベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-11-06T01:33:24Z) - Pair then Relation: Pair-Net for Panoptic Scene Graph Generation [54.92476119356985]
Panoptic Scene Graph (PSG) は、ボックスの代わりにパン光学セグメンテーションを使用して、より包括的なシーングラフ表現を作成することを目的としている。
現在のPSGメソッドは性能が限られており、下流のタスクやアプリケーションを妨げる。
Pair then Relation (Pair-Net) - Pair Proposal Network (PPN) を用いて、対象と対象間の疎対関係を学習・フィルタリングする。
論文 参考訳(メタデータ) (2023-07-17T17:58:37Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - New Frontiers in Graph Autoencoders: Joint Community Detection and Link
Prediction [27.570978996576503]
リンク予測(LP)の強力な方法として,グラフオートエンコーダ(GAE)と変分グラフオートエンコーダ(VGAE)が登場した。
特にノード機能がない場合、GAEとVGAEでCDをどの程度改善できるかは不明である。
これら2つのタスクを高い精度で共同で処理することは可能であることを示す。
論文 参考訳(メタデータ) (2022-11-16T15:26:56Z) - Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams) [8.430851504111585]
本稿では,共有メモリ並列性を利用した効率的な反復アルゴリズムと,適合エネルギー勾配の解析式を導入する。
我々は,2つの典型的なPCAアプリケーションを統合することで,コントリビューションの有用性を示す。
MT-PGAベースの最初の2方向を利用して2次元レイアウトを生成する次元削減フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-22T09:17:22Z) - Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased
Scene Graph Generation [62.96628432641806]
Scene Graph Generationは、まず与えられた画像内の視覚的コンテンツをエンコードし、次にそれらをコンパクトな要約グラフに解析することを目的としている。
まず,モーダル内改良とモーダル間相互作用を容易にする新しいスタック型ハイブリッド・アテンションネットワークを提案する。
次に、デコーダを最適化するための革新的なグループ協調学習戦略を考案する。
論文 参考訳(メタデータ) (2022-03-18T09:14:13Z) - Target Adaptive Context Aggregation for Video Scene Graph Generation [36.669700084337045]
本稿では,映像シーングラフ生成(VidSGG)の課題を扱う。
複雑な低レベルエンティティ追跡から関係予測のためのコンテキストモデリングを分離することにより,この課題に対する新しい Em 検出-追跡パラダイムを提案する。
論文 参考訳(メタデータ) (2021-08-18T12:46:28Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
動的レコメンデーションは,逐次データに基づくリアルタイム予測を提供するレコメンデータシステムにとって不可欠である。
本稿では、動的グラフを利用して協調関係とシーケンシャル関係をキャプチャする新しいフレームワーク、Dynamic Graph Collaborative Filtering (DGCF)を提案する。
提案手法は, 動的協調情報の統合の有効性を示すため, 動作繰り返しの少ないデータセットでは高い性能を実現する。
論文 参考訳(メタデータ) (2021-01-08T04:16:24Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
グラフ畳み込みの利点を文脈認識推薦システム(CARS)に拡張する。
我々は、エンコーダ、グラフ畳み込み層、デコーダの3つのコンポーネントからなるエンドツーエンドフレームワークである textitGraph Convolution Machine (GCM) を提案する。
我々はYelpとAmazonの3つの実世界のデータセットで実験を行い、GCMの有効性とCARSのためのグラフ畳み込みの利点を検証する。
論文 参考訳(メタデータ) (2020-01-30T15:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。