論文の概要: An Agile Adaptation Method for Multi-mode Vehicle Communication Networks
- arxiv url: http://arxiv.org/abs/2408.01429v1
- Date: Thu, 18 Jul 2024 13:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 05:08:48.012773
- Title: An Agile Adaptation Method for Multi-mode Vehicle Communication Networks
- Title(参考訳): マルチモード車両通信ネットワークのためのアジャイル適応手法
- Authors: Shiwen He, Kanghong Chen, Shiyue Huang, Wei Huang, Zhenyu An,
- Abstract要約: 意思決定プロセスと強化学習を適用して、アジャイル適応機構を確立する。
Q-learningは、アジャイル適応強化学習モデルをトレーニングし、トレーニングされたモデルを出力するために使用される。
- 参考スコア(独自算出の注目度): 9.632025797373158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on discovering the impact of communication mode allocation on communication efficiency in the vehicle communication networks. To be specific, Markov decision process and reinforcement learning are applied to establish an agile adaptation mechanism for multi-mode communication devices according to the driving scenarios and business requirements. Then, Q-learning is used to train the agile adaptation reinforcement learning model and output the trained model. By learning the best actions to take in different states to maximize the cumulative reward, and avoiding the problem of poor adaptation effect caused by inaccurate delay measurement in unstable communication scenarios. The experiments show that the proposed scheme can quickly adapt to dynamic vehicle networking environment, while achieving high concurrency and communication efficiency.
- Abstract(参考訳): 本稿では,車両通信ネットワークにおける通信モード割り当てが通信効率に与える影響を明らかにすることに焦点を当てる。
具体的には、Markovの決定プロセスと強化学習を適用して、駆動シナリオとビジネス要件に応じて、マルチモード通信デバイスのためのアジャイル適応メカニズムを確立する。
次に、Q-learningを使用して、アジャイル適応強化学習モデルをトレーニングし、トレーニングされたモデルを出力します。
累積報酬を最大化するために異なる状態を取る最善の行動を学ぶことにより、不安定な通信シナリオにおける不正確な遅延測定による適応効果の低い問題を回避する。
実験の結果,提案手法は動的車両ネットワーク環境に迅速に適応でき,高い並行性と通信効率を実現することができることがわかった。
関連論文リスト
- DRL-Based Optimization for AoI and Energy Consumption in C-V2X Enabled IoV [33.32647734550201]
本稿では,C-V2X車両通信システムにおけるマルチプライオリティキューとNOMAが情報時代に与える影響を解析する。
提案手法は,エネルギー消費とAoIの両面での進歩を示すものである。
論文 参考訳(メタデータ) (2024-11-20T07:59:35Z) - Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks [0.14999444543328289]
本稿では、DQNモデルの有効性を実証し、スペクトル共有効率を向上させるためのいくつかの結果と分析を行った。
SARLモデルとMARLモデルの両方がV2V通信の成功率を示し、トレーニングが進むにつれてRLモデルの累積報酬が最大に達する。
論文 参考訳(メタデータ) (2024-10-16T12:59:59Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
交通信号の効率的な制御 (TSC) は, 都市交通渋滞の低減に最も有用な方法の1つである。
強化学習(RL)手法を適用した最近の取り組みは、トラフィック状態を信号決定にリアルタイムでマッピングすることでポリシーをクエリすることができる。
本稿では,適応的,リアルタイム,ネットワークレベルのTSCを満足する,EMCに基づくオンライン計画手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T04:08:09Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Federated Reinforcement Learning at the Edge [1.4271989597349055]
現代のサイバー物理アーキテクチャでは、異なる物理的位置にあるシステムから収集されたデータを使用して適切な振る舞いを学び、不確実な環境に適応する。
本稿では,複数のエージェントが分散的に収集された時系列データに対して,強化学習問題を共同で解決するために,効率的にコミュニケーションを行う必要がある設定について考察する。
通信効率向上のためのアルゴリズムが提案され、理論的保証、実践的実装、数値評価がサポートされている。
論文 参考訳(メタデータ) (2021-12-11T03:28:59Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Deep reinforcement learning of event-triggered communication and control
for multi-agent cooperative transport [9.891241465396098]
協調輸送のためのコミュニケーション・制御戦略の設計問題に対処する多エージェント強化学習手法を検討する。
我々のフレームワークはイベントトリガーアーキテクチャ、すなわち通信入力を演算するフィードバックコントローラと、入力を再更新する必要があるタイミングを決定するトリガー機構を利用する。
論文 参考訳(メタデータ) (2021-03-29T01:16:12Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。