Multi-Unit Floor Plan Recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
- URL: http://arxiv.org/abs/2408.01526v1
- Date: Fri, 2 Aug 2024 18:36:45 GMT
- Title: Multi-Unit Floor Plan Recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
- Authors: Lukas Kratochvila, Gijs de Jong, Monique Arkesteijn, Simon Bilik, Tomas Zemcik, Karel Horak, Jan S. Rellermeyer,
- Abstract summary: We propose two novel pixel-wise segmentation methods based on the MDA-Unet and MACU-Net architectures.
The proposed methods are compared with two other state-of-the-art techniques and several benchmark datasets.
On the commonly used CubiCasa benchmark dataset, our methods have achieved the mean F1 score of 0.86 over five examined classes.
- Score: 1.0436971860292366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and faster rescue intervention. Nevertheless, creating the twins still remains a largely manual effort, due to a lack of 3D-representations, which are available only in limited amounts for some new buildings. Thus, in this paper we aim to synthesize 3D information from commonly available 2D architectural floor plans. We propose two novel pixel-wise segmentation methods based on the MDA-Unet and MACU-Net architectures with improved skip connections, an attention mechanism, and a training objective together with a reconstruction part of the pipeline, which vectorizes the segmented plans to create a 3D model. The proposed methods are compared with two other state-of-the-art techniques and several benchmark datasets. On the commonly used CubiCasa benchmark dataset, our methods have achieved the mean F1 score of 0.86 over five examined classes, outperforming the other pixel-wise approaches tested. We have also made our code publicly available to support research in the field.
Related papers
- Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning [18.432786227782803]
We propose a geometry-aware semi-supervised framework for fine-grained building function recognition.
We use geometric relationships among multi-source data to enhance pseudo-label accuracy in semi-supervised learning.
Our proposed framework exhibits superior performance in fine-grained functional recognition of buildings.
arXiv Detail & Related papers (2024-08-18T12:48:48Z) - PointSeg: A Training-Free Paradigm for 3D Scene Segmentation via Foundation Models [51.24979014650188]
We present PointSeg, a training-free paradigm that leverages off-the-shelf vision foundation models to address 3D scene perception tasks.
PointSeg can segment anything in 3D scene by acquiring accurate 3D prompts to align their corresponding pixels across frames.
Our approach significantly surpasses the state-of-the-art specialist training-free model by 14.1$%$, 12.3$%$, and 12.6$%$ mAP on ScanNet, ScanNet++, and KITTI-360 datasets.
arXiv Detail & Related papers (2024-03-11T03:28:20Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Semi-Supervised Single-View 3D Reconstruction via Prototype Shape Priors [79.80916315953374]
We propose SSP3D, a semi-supervised framework for 3D reconstruction.
We introduce an attention-guided prototype shape prior module for guiding realistic object reconstruction.
Our approach also performs well when transferring to real-world Pix3D datasets under labeling ratios of 10%.
arXiv Detail & Related papers (2022-09-30T11:19:25Z) - Reconstruct from Top View: A 3D Lane Detection Approach based on
Geometry Structure Prior [19.1954119672487]
We propose an advanced approach in targeting the problem of monocular 3D lane detection by leveraging geometry structure underneath process of 2D to 3D lane reconstruction.
We first analyze the geometry between the 3D lane and its 2D representation on the ground and propose to impose explicit supervision based on the structure prior.
Second, to reduce the structure loss in 2D lane representation, we directly extract top view lane information from front view images.
arXiv Detail & Related papers (2022-06-21T04:03:03Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - End-to-end Weakly-supervised Single-stage Multiple 3D Hand Mesh
Reconstruction from a Single RGB Image [9.238322841389994]
We propose a single-stage pipeline for multi-hand reconstruction.
Specifically, we design a multi-head auto-encoder structure, where each head network shares the same feature map and outputs the hand center, pose and texture.
Our method outperforms the state-of-the-art model-based methods in both weakly-supervised and fully-supervised manners.
arXiv Detail & Related papers (2022-04-18T03:57:14Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
We argue that MDP is currently witnessing benchmark over-fitting and relying on metrics that are only partially helpful to gauge the usefulness of the predictions for 3D applications.
This limits the design and development of novel methods that are truly aware of - and improving towards estimating - the 3D structure of the scene rather than optimizing 2D-based distances.
We propose a set of metrics well suited to evaluate the 3D geometry of MDP approaches and a novel indoor benchmark, RIO-D3D, crucial for the proposed evaluation methodology.
arXiv Detail & Related papers (2022-03-15T17:50:54Z) - PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for
Piece-Wise Plane Detection and Reconstruction from a Single RGB Image [11.215334675788952]
Piece-wise 3D planar reconstruction provides holistic scene understanding of man-made environments, especially for indoor scenarios.
Most recent approaches focused on improving the segmentation and reconstruction results by introducing advanced network architectures.
We start from enforcing cross-task consistency for our multi-task convolutional neural network, PlaneRecNet.
We introduce several novel loss functions (geometric constraint) that jointly improve the accuracy of piece-wise planar segmentation and depth estimation.
arXiv Detail & Related papers (2021-10-21T15:54:03Z) - Translational Symmetry-Aware Facade Parsing for 3D Building
Reconstruction [11.263458202880038]
In this paper, we present a novel translational symmetry-based approach to improving the deep neural networks.
We propose a novel scheme to fuse anchor-free detection in a single stage network, which enables the efficient training and better convergence.
We employ an off-the-shelf rendering engine like Blender to reconstruct the realistic high-quality 3D models using procedural modeling.
arXiv Detail & Related papers (2021-06-02T03:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.