論文の概要: Momentum Capture and Prediction System Based on Wimbledon Open2023 Tournament Data
- arxiv url: http://arxiv.org/abs/2408.01544v1
- Date: Fri, 2 Aug 2024 19:14:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:40:03.139929
- Title: Momentum Capture and Prediction System Based on Wimbledon Open2023 Tournament Data
- Title(参考訳): ウィンブルドン・オープン2023トーナメントデータに基づくモーメント・キャプチャーと予測システム
- Authors: Chang Liu, Tongyuan Yang, Yan Zhao,
- Abstract要約: 本研究では,エントロピー重み法(EWM)とグレイ関係解析(GRA)を相乗化して,運動量の影響を定量化する評価モデルを提案する。
モデルが特定の要因が一致力学に与える影響を識別する能力は、両方向の距離が点の間を走るときに、その長所を示す。
- 参考スコア(独自算出の注目度): 4.733690536516437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a hidden energy in tennis, which cannot be seen or touched. It is the force that controls the flow of the game and is present in all types of matches. This mysterious force is Momentum. This study introduces an evaluation model that synergizes the Entropy Weight Method (EWM) and Gray Relation Analysis (GRA) to quantify momentum's impact on match outcomes. Empirical validation was conducted through Mann-Whitney U and Kolmogorov-Smirnov tests, which yielded p values of 0.0043 and 0.00128,respectively. These results underscore the non-random association between momentum shifts and match outcomes, highlighting the critical role of momentum in tennis. Otherwise, our investigation foucus is the creation of a predictive model that combines the advanced machine learning algorithm XGBoost with the SHAP framework. This model enables precise predictions of match swings with exceptional accuracy (0.999013 for multiple matches and 0.992738 for finals). The model's ability to identify the influence of specific factors on match dynamics,such as bilateral distance run during points, demonstrates its prowess.The model's generalizability was thoroughly evaluated using datasets from the four Grand Slam tournaments. The results demonstrate its remarkable adaptability to different match scenarios,despite minor variations in predictive accuracy. It offers strategic insights that can help players effectively respond to opponents' shifts in momentum,enhancing their competitive edge.
- Abstract(参考訳): テニスには隠れたエネルギーがあり、見ることも触ることもできない。
ゲームの流れを制御する力であり、あらゆる種類の試合に存在している。
この謎の力はモメンタムです。
本研究では,エントロピー重み法(EWM)とグレイ関係解析(GRA)を相乗化して,運動量の影響を定量化する評価モデルを提案する。
実験的な検証はマン=ホイットニーUとコルモゴロフ=スミルノフの実験によって行われ、p値は0.0043と0.00128となった。
これらの結果は、運動量シフトと一致結果の非ランダムな関連性を強調し、テニスにおける運動量の重要性を強調している。
さもなくば、我々の調査は、高度な機械学習アルゴリズムXGBoostとSHAPフレームワークを組み合わせた予測モデルの作成である。
このモデルにより、マッチスイングの精度を極めて高い精度で予測できる(複数試合で0.999013、決勝で0.992738)。
本モデルでは,2点間距離の走行など,特定の要因が一致ダイナミクスに与える影響を同定し,その性能を実証し,グランドスラムの4つのトーナメントのデータセットを用いて,モデルの一般化性について徹底的に評価した。
結果は,予測精度の微妙な変化にもかかわらず,異なる一致シナリオに対する顕著な適応性を示した。
プレイヤーが相手の運動量の変化に効果的に対応し、競争力を高める戦略的洞察を提供する。
関連論文リスト
- Lasso Ridge based XGBoost and Deep_LSTM Help Tennis Players Perform better [1.6016817180824583]
プレイヤーの性能を評価し,運動量効果を定量化するために,スライディングウインドウを用いたスコアリングモデルを開発した。
本稿では、LSTM_Deepモデルを用いて、ゲーム変動を定量化するための勝利率アルゴリズムの導出法を提案する。
本研究は,運動量動態とゲームゆらぎに着目し,スポーツ分析や選手のトレーニング戦略に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-05-11T15:02:08Z) - Capturing Momentum: Tennis Match Analysis Using Machine Learning and Time Series Theory [0.9449650062296823]
本稿ではテニスの試合の勢いについて分析する。
まず隠れマルコフモデルを用いてプレイヤーのパフォーマンスとして定義される運動量を予測する。
そして、Xgboost を用いて運動量の重要性を証明する。
論文 参考訳(メタデータ) (2024-04-20T07:11:06Z) - MLFEF: Machine Learning Fusion Model with Empirical Formula to Explore
the Momentum in Competitive Sports [2.4048240311299725]
私たちは2つのモデルを構築します。1つはデータ駆動型に基づくモデルを構築すること、もう1つは経験則に基づくモデルを構築することです。
データ駆動型モデルでは,過去5年間にテニスの試合の公開データや選手の個人情報データを含む大量の公開データを発見した。
メカニズム分析モデルでは,多くのテニス選手や愛好家の提案に基づいて重要な特徴が選択された。
論文 参考訳(メタデータ) (2024-02-19T14:02:13Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
バドミントンにおけるプレイヤー戦術予測のための深層学習アプローチは、部分的にはラリープレイヤの相互作用に関する効果的な推論に起因する有望なパフォーマンスを示している。
本稿では,Shapley値の変量に基づいてバドミントンにおける予測モデルを解析するためのターンベース特徴属性手法であるShuttleSHAPを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:37:51Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
正統な文書に不可避な摂動を加えることで 敵の例を作れます
この脆弱性は信頼性に関する重大な懸念を生じさせ、NRMの展開を妨げている。
本研究では,NRMにおける有効・損耗トレードオフに関する理論的保証を確立する。
論文 参考訳(メタデータ) (2023-12-16T05:38:39Z) - Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
本研究は, 期待目標(xG)測定値を用いて, 目標となるショットの予測における選手や位置要因の影響について検討した。
StatsBombの公開データを使って、イングランドのプレミアリーグから1万発のショットを分析している。
この研究は、スペインのラ・リガとドイツのブンデスリーガのデータに分析を拡張し、同等の結果を得た。
論文 参考訳(メタデータ) (2023-11-22T21:54:02Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
本稿では,テーブルテニスシングルマッチの結果を予測するために機械学習を用いることを提案する。
我々は,プレイヤーとマッチング統計を特徴として用いて,その相対的重要性をアブレーション研究で評価する。
結果は将来の卓球予測モデルのベースラインとして機能し、同様の球技の予測研究にフィードバックすることができる。
論文 参考訳(メタデータ) (2023-03-28T17:42:13Z) - Machine Learning in Sports: A Case Study on Using Explainable Models for
Predicting Outcomes of Volleyball Matches [0.0]
本稿では,ブラジルバレーボールリーグ(SuperLiga)における試合結果を予測するための2相説明可能な人工知能(XAI)アプローチについて検討する。
第1フェーズでは、解釈可能なルールベースのMLモデルを直接使用し、モデルの振る舞いをグローバルに理解する。
第2フェーズでは,SVM(Support Vector Machine)やDNN(Deep Neural Network)といった非線形モデルを構築し,バレーボールの試合結果の予測性能を得る。
論文 参考訳(メタデータ) (2022-06-18T18:09:15Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。