論文の概要: On Validation of Search & Retrieval of Tissue Images in Digital Pathology
- arxiv url: http://arxiv.org/abs/2408.01570v1
- Date: Fri, 2 Aug 2024 20:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:30:18.833579
- Title: On Validation of Search & Retrieval of Tissue Images in Digital Pathology
- Title(参考訳): デジタル病理における組織像の検索と検索の妥当性について
- Authors: H. R. Tizhoosh,
- Abstract要約: 医療画像は、診断、治療計画、疾病モニタリングに不可欠な情報を提供することによって、現代医療において重要な役割を担っている。
技術的進歩は、医療画像の量と複雑さを指数関数的に増加させてきた。
CBIR (Content-Based Image Retrieval) システムは、視覚コンテンツに基づいて画像を検索して検索することで、このニーズに対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical images play a crucial role in modern healthcare by providing vital information for diagnosis, treatment planning, and disease monitoring. Fields such as radiology and pathology rely heavily on accurate image interpretation, with radiologists examining X-rays, CT scans, and MRIs to diagnose conditions from fractures to cancer, while pathologists use microscopy and digital images to detect cellular abnormalities for diagnosing cancers and infections. The technological advancements have exponentially increased the volume and complexity of medical images, necessitating efficient tools for management and retrieval. Content-Based Image Retrieval (CBIR) systems address this need by searching and retrieving images based on visual content, enhancing diagnostic accuracy by allowing clinicians to find similar cases and compare pathological patterns. Comprehensive validation of image search engines in medical applications involves evaluating performance metrics like accuracy, indexing, and search times, and storage overhead, ensuring reliable and efficient retrieval of accurate results, as demonstrated by recent validations in histopathology.
- Abstract(参考訳): 医療画像は、診断、治療計画、疾病モニタリングに不可欠な情報を提供することによって、現代医療において重要な役割を担っている。
放射線学や病理学などの分野は正確な画像解釈に大きく依存しており、X線、CTスキャン、MRIを用いて骨折から癌までを診断する一方、病理学者は顕微鏡とデジタル画像を用いてがんや感染症の診断に細胞異常を検出する。
技術的進歩は、医療画像の量と複雑さを指数関数的に増加させ、管理と検索に効率的なツールを必要としている。
CBIR(Content-Based Image Retrieval)システムは、視覚的コンテンツに基づいて画像の検索と検索を行い、臨床医が類似の症例を見つけ、病理パターンを比較することによって診断精度を高めることで、このニーズに対処する。
医療応用における画像検索エンジンの総合的検証には、精度、インデックス化、検索時間、ストレージオーバーヘッドなどのパフォーマンス指標の評価が含まれており、最近の病理組織学の検証で示されているように、正確な結果の信頼性と効率的な検索が保証されている。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
人工知能のサブセットであるディープラーニングの最近の進歩は、医療画像の分析に大きな革命をもたらした。
CNNは多次元医用画像から自律的に学習する能力に顕著な能力を示した。
これらのモデルは、病理学、放射線学、眼科、心臓学など、様々な医学分野に利用されてきた。
論文 参考訳(メタデータ) (2024-10-18T02:57:14Z) - On Image Search in Histopathology [0.0]
病理組織学における画像検索技術の最近の展開について概説する。
本研究は, 画像検索の効率, 高速, 効率的な手法を求める計算病理研究者向けに, 簡潔な概要を提示する。
論文 参考訳(メタデータ) (2024-01-14T12:38:49Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
本稿では,冠動脈狭窄の部位を正確に同定するために,X線血管造影画像の物体検出法を応用した。
このモデルにより,狭窄箇所の自動的かつリアルタイムな検出が可能となり,決定プロセスの重要かつ機密性の高い支援が可能となった。
論文 参考訳(メタデータ) (2023-12-19T13:14:52Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
医用画像のテキストレポートの代替としてアイトラッキングを提案する。
医用画像を読み,診断する際に放射線科医の視線を追跡することにより,その視覚的注意と臨床的理由を理解することができる。
対照的な学習フレームワークのためのプラグイン・アンド・プレイモジュールとして,McGIP (McGIP) を導入した。
論文 参考訳(メタデータ) (2023-12-11T02:27:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
我々は、AIベースのアプローチ、特にCNN(Convolutional Neural Networks)の使用が、医療画像技術による疾患検出にどのように役立つかに焦点を当てる。
CNNは、生の入力画像から特徴を抽出できるため、画像解析の一般的な手法である。
論文 参考訳(メタデータ) (2023-06-03T09:05:35Z) - Improving Clinical Diagnosis Performance with Automated X-ray Scan
Quality Enhancement Algorithms [0.9137554315375919]
臨床診断において、医療画像には、ノイズ、ぼかし、故障装置によって導入された欠陥アーチファクトが含まれている可能性がある。
本稿では,医用画像の超解像処理に適応し,ベンチマークを行うための画像品質改善手法を提案する。
論文 参考訳(メタデータ) (2022-01-17T07:27:03Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。