論文の概要: On the Rationale and Use of Assertion Messages in Test Code: Insights from Software Practitioners
- arxiv url: http://arxiv.org/abs/2408.01751v1
- Date: Sat, 3 Aug 2024 11:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:30:57.911073
- Title: On the Rationale and Use of Assertion Messages in Test Code: Insights from Software Practitioners
- Title(参考訳): テストコードにおけるアサーションメッセージの規則と使用について:ソフトウェア実践者からの考察
- Authors: Anthony Peruma, Taryn Takebayashi, Rocky Huang, Joseph Carmelo Averion, Veronica Hodapp, Christian D. Newman, Mohamed Wiem Mkaouer,
- Abstract要約: 単体テストは、一連のテストケースを通じてその振る舞いを検証することによって、ソフトウェアシステムの品質を保証するための重要なプラクティスである。
これらのテストケースの中核となるのはアサーションステートメントであり、それによってソフトウェア実践者がシステムの振る舞いの正しさを検証することができる。
テストケース障害の理解とトラブルシューティングを支援するため、実践者はアサーションステートメントにメッセージ(すなわちアサーションメッセージ)を含めることができる。
- 参考スコア(独自算出の注目度): 10.264620067797798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unit testing is an important practice that helps ensure the quality of a software system by validating its behavior through a series of test cases. Core to these test cases are assertion statements, which enable software practitioners to validate the correctness of the system's behavior. To aid with understanding and troubleshooting test case failures, practitioners can include a message (i.e., assertion message) within the assertion statement. While prior studies have examined the frequency and structure of assertion messages by mining software repositories, they do not determine their types or purposes or how practitioners perceive the need for or the usage of various types of assertion messages. In this paper, we survey 138 professional software practitioners to gather insights into their experience and views regarding assertion messages. Our findings reveal that a majority of survey respondents find assertion messages valuable for troubleshooting failures, improving test understandability, and serving as documentation. However, not all respondents consistently include messages in their assertion methods. We also identified common considerations for constructing effective assertion messages, challenges in crafting them, maintenance techniques, and their integration into debugging processes. Our results contribute to the understanding of current practices and provide guidelines for authoring high-quality assertion messages, serving as a foundation for best practices and coding standards. Furthermore, the insights can guide the improvement of automated unit testing tools by incorporating checks for the presence and quality of assertion messages and providing real-time feedback to practitioners.
- Abstract(参考訳): 単体テストは、一連のテストケースを通じてその振る舞いを検証することによって、ソフトウェアシステムの品質を保証するための重要なプラクティスである。
これらのテストケースの中核となるのはアサーションステートメントであり、それによってソフトウェア実践者がシステムの振る舞いの正しさを検証することができる。
テストケース障害の理解とトラブルシューティングを支援するため、実践者はアサーションステートメントにメッセージ(すなわちアサーションメッセージ)を含めることができる。
ソフトウェアリポジトリのマイニングによるアサーションメッセージの頻度と構造についてはこれまで研究されてきたが、それらのタイプや目的や、実践者がさまざまなタイプのアサーションメッセージの必要性や使用法を判断するものではない。
本稿では,プロのソフトウェア実践者138名を対象に,アサーションメッセージに関する経験や見解を収集する。
私たちの調査によると、回答者の大多数は、アサーションメッセージが障害のシューティング、テストの可視性の向上、ドキュメントとしての役割を果たしていることに気付きました。
しかし、すべての回答者が一貫してアサーションメソッドにメッセージを含めているわけではない。
また、効果的なアサーションメッセージの構築、作成における課題、メンテナンス技術、デバッグプロセスへの統合に関する一般的な考察も確認した。
我々の結果は、現在のプラクティスの理解に寄与し、高品質なアサーションメッセージのオーサリングのためのガイドラインを提供し、ベストプラクティスやコーディング標準の基礎として役立ちます。
さらに、この洞察は、アサーションメッセージの存在と品質のチェックを取り入れ、実践者にリアルタイムフィードバックを提供することによって、自動ユニットテストツールの改善を導くことができる。
関連論文リスト
- Usefulness of LLMs as an Author Checklist Assistant for Scientific Papers: NeurIPS'24 Experiment [59.09144776166979]
大規模言語モデル(LLM)は、科学的ピアレビューを支援する上で有望だが議論の余地のあるツールである。
本研究は,論文提出を提出基準に適合させるツールとして,会議環境におけるLCMの有用性を評価する。
論文 参考訳(メタデータ) (2024-11-05T18:58:00Z) - Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution [11.418182511485032]
3つの大言語モデル(LLM)が生成するコメントを評価する。
文書をLCMを用いて検証し、文書に基づいてテストを生成し、それらのテストを実行し、通過するかどうかを観察する文書テストの概念を提案する。
論文 参考訳(メタデータ) (2024-06-21T02:40:34Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
本研究では,自然言語フィードバック型検証器Math-Minosを提案する。
実験の結果,少量の自然言語フィードバックが検証器の性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-20T06:42:27Z) - FactCheck Editor: Multilingual Text Editor with End-to-End fact-checking [1.985242455423935]
「FactCheck Editor」は、事実チェックと正しい事実不正確性を自動化するために設計された高度なテキストエディタである。
90以上の言語をサポートし、トランスフォーマーモデルを使用して、人間の労働集約的な事実検証を支援する。
論文 参考訳(メタデータ) (2024-04-30T11:55:20Z) - Towards General Error Diagnosis via Behavioral Testing in Machine
Translation [48.108393938462974]
本稿では,機械翻訳(MT)システムの動作試験を行うための新しい枠組みを提案する。
BTPGBTの中核となる考え方は、新しいバイリンガル翻訳ペア生成アプローチを採用することである。
様々なMTシステムの実験結果から,BTPGBTは包括的かつ正確な行動検査結果を提供できることが示された。
論文 参考訳(メタデータ) (2023-10-20T09:06:41Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
最近の言語モデル(LM)は、パラメータに内在化された知識を持つテキストを生成する際、印象的な能力を示している。
本稿では,知識付加型LMの出力と知識を別個の検証器で検証することを提案する。
その結果,提案した検証器は,検索と生成の誤りを効果的に識別し,LMがより現実的に正しい出力を提供できることを示した。
論文 参考訳(メタデータ) (2023-10-19T15:40:00Z) - Automatic Generation of Test Cases based on Bug Reports: a Feasibility
Study with Large Language Models [4.318319522015101]
既存のアプローチは、単純なテスト(例えば単体テスト)や正確な仕様を必要とするテストケースを生成する。
ほとんどのテスト手順は、テストスイートを形成するために人間が書いたテストケースに依存しています。
大規模言語モデル(LLM)を活用し,バグレポートを入力として利用することにより,この生成の実現可能性を検討する。
論文 参考訳(メタデータ) (2023-10-10T05:30:12Z) - Prompting Code Interpreter to Write Better Unit Tests on Quixbugs
Functions [0.05657375260432172]
単体テストは、ソフトウェア工学において、記述されたコードの正確性と堅牢性をテストするために一般的に使用されるアプローチである。
本研究では,コードインタプリタが生成する単体テストの品質に及ぼす異なるプロンプトの影響について検討する。
生成した単体テストの品質は、提供されたプロンプトのマイナーな詳細の変更に敏感ではないことがわかった。
論文 参考訳(メタデータ) (2023-09-30T20:36:23Z) - Automated Grading and Feedback Tools for Programming Education: A
Systematic Review [7.776434991976473]
ほとんどの論文はオブジェクト指向言語における代入の正確性を評価する。
ソースコードの保守性、可読性、ドキュメントを評価するツールは少ない。
ほとんどのツールは、ほぼ即時フィードバックを可能にする完全に自動化されたアセスメントを提供する。
論文 参考訳(メタデータ) (2023-06-20T17:54:50Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
我々は、非ネイティブ話者から実際の文法的誤りを収集し、これらの誤りをクリーンテキストデータ上でシミュレートするために敵攻撃を行う。
結果,全ての試験モデルの性能は影響するが,影響の程度は異なることがわかった。
論文 参考訳(メタデータ) (2020-05-12T11:01:44Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。