論文の概要: Towards Automatic Hands-on-Keyboard Attack Detection Using LLMs in EDR Solutions
- arxiv url: http://arxiv.org/abs/2408.01993v1
- Date: Sun, 4 Aug 2024 11:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:45:06.954669
- Title: Towards Automatic Hands-on-Keyboard Attack Detection Using LLMs in EDR Solutions
- Title(参考訳): EDRソリューションにおけるLCMを用いたキーボード自動検出の実現に向けて
- Authors: Amit Portnoy, Ehud Azikri, Shay Kels,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いて,HOK(Hands-on-Keyboard)サイバー攻撃を検出する手法を提案する。
本手法では, 終端アクティビティデータを, LLMが通常の操作と潜在的HOK攻撃を区別するために分析できる物語形式に変換する。
- 参考スコア(独自算出の注目度): 3.345437353879255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Endpoint Detection and Remediation (EDR) platforms are essential for identifying and responding to cyber threats. This study presents a novel approach using Large Language Models (LLMs) to detect Hands-on-Keyboard (HOK) cyberattacks. Our method involves converting endpoint activity data into narrative forms that LLMs can analyze to distinguish between normal operations and potential HOK attacks. We address the challenges of interpreting endpoint data by segmenting narratives into windows and employing a dual training strategy. The results demonstrate that LLM-based models have the potential to outperform traditional machine learning methods, offering a promising direction for enhancing EDR capabilities and apply LLMs in cybersecurity.
- Abstract(参考訳): エンドポイント検出と修復(EDR)プラットフォームは、サイバー脅威の特定と対応に不可欠である。
本研究では,大規模言語モデル(LLM)を用いて,HOK(Hands-on-Keyboard)サイバー攻撃を検出する手法を提案する。
本手法では, 終端アクティビティデータを, LLMが通常の操作と潜在的HOK攻撃を区別するために分析できる物語形式に変換する。
我々は、物語をウィンドウに分割し、デュアルトレーニング戦略を採用することによって、エンドポイントデータを解釈する課題に対処する。
結果は、LLMベースのモデルが従来の機械学習手法を上回り、EDR能力を向上し、LLMをサイバーセキュリティに適用するための有望な方向性を提供する可能性を実証している。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models [27.397408870544453]
大規模言語モデル(LLM)は、人工知能の急速に発展する分野において焦点となっている。
重要な懸念は、これらのモデルの事前学習コーパス内に有毒な物質が存在することであり、不適切な出力が発生する可能性がある。
本稿では,プロンプトを最適化する代わりに,ターゲット応答を直接抽出することに焦点を当てた,ターゲット駆動型攻撃パラダイムを提案する。
論文 参考訳(メタデータ) (2024-08-27T08:12:08Z) - Defending Against Social Engineering Attacks in the Age of LLMs [19.364994678178036]
大きな言語モデル(LLM)は、人間の会話パターンをエミュレートし、チャットベースのソーシャルエンジニアリング(CSE)攻撃を促進する。
本研究では,CSE脅威に対するファシリテーターとディフェンダーの両立能力について検討した。
メッセージレベルと会話レベルの両方の検出を改善するモジュール型ディフェンスパイプラインであるConvoSentinelを提案する。
論文 参考訳(メタデータ) (2024-06-18T04:39:40Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
大規模言語モデル(LLM)は敵の脅威に対して脆弱である。
本稿では, LLM へのホワイトボックスアクセスを前提とした, 革新的な防御戦略を提案する。
そこで本研究では,アタックプロンプト分類のための残差ストリームの固有なアクティベーションパターンを解析するための新しい手法を適用した。
論文 参考訳(メタデータ) (2024-06-05T13:06:33Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
以上の結果から,命令調整モデルでは,ベースモデルと同等に事前学習データを公開することが可能であり,他のLSMが提案する命令を用いることで,新たな自動攻撃の道を開くことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T19:32:01Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
回帰問題に対してデータセットシフトを効果的に検出する手法を提案する。
提案手法は帰納的共形異常検出に基づいており,回帰モデルに変分オートエンコーダを用いる。
自動運転車用オープンソースシミュレータに実装された高度緊急ブレーキシステムを用いて,本手法を実証する。
論文 参考訳(メタデータ) (2021-04-14T03:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。