A Smart City Infrastructure Ontology for Threats, Cybercrime, and Digital Forensic Investigation
- URL: http://arxiv.org/abs/2408.02023v1
- Date: Sun, 4 Aug 2024 13:20:01 GMT
- Title: A Smart City Infrastructure Ontology for Threats, Cybercrime, and Digital Forensic Investigation
- Authors: Yee Ching Tok, Davis Zheng Yang, Sudipta Chattopadhyay,
- Abstract summary: Efforts have been made to assist digital forensic investigators (DFI) and law enforcement agencies (LEA) in their investigative efforts.
Forensic tool innovations and developments, such as the Unified Cyber Ontology (UCO) and Cyber-investigation Standard Expression (CASE), have been proposed to assist DFI and LEA.
To mitigate weaknesses in both and to ensure a safer cyber-physical environment for all, we propose the Smart City Ontological Expression (SCOPE)
- Score: 2.2530496464901106
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cybercrime and the market for cyber-related compromises are becoming attractive revenue sources for state-sponsored actors, cybercriminals and technical individuals affected by financial hardships. Due to burgeoning cybercrime on new technological frontiers, efforts have been made to assist digital forensic investigators (DFI) and law enforcement agencies (LEA) in their investigative efforts. Forensic tool innovations and ontology developments, such as the Unified Cyber Ontology (UCO) and Cyber-investigation Analysis Standard Expression (CASE), have been proposed to assist DFI and LEA. Although these tools and ontologies are useful, they lack extensive information sharing and tool interoperability features, and the ontologies lack the latest Smart City Infrastructure (SCI) context that was proposed. To mitigate the weaknesses in both solutions and to ensure a safer cyber-physical environment for all, we propose the Smart City Ontological Paradigm Expression (SCOPE), an expansion profile of the UCO and CASE ontology that implements SCI threat models, SCI digital forensic evidence, attack techniques, patterns and classifications from MITRE. We showcase how SCOPE could present complex data such as SCI-specific threats, cybercrime, investigation data and incident handling workflows via an incident scenario modelled after publicly reported real-world incidents attributed to Advanced Persistent Threat (APT) groups. We also make SCOPE available to the community so that threats, digital evidence and cybercrime in emerging trends such as SCI can be identified, represented, and shared collaboratively.
Related papers
- Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
The digitization of all processes and the opening to IoT devices has fostered the emergence of a new formof crime, i.e. cybercrime.
The maliciousness of such attacks lies in the fact that they turn users into facilitators of cyber-attacks, to the point of being perceived as the weak link'' of cybersecurity.
Knowing how to anticipate, identifying weak signals and outliers, detect early and react quickly to computer crime are therefore priority issues requiring a prevention and cooperation approach.
arXiv Detail & Related papers (2024-06-17T13:25:27Z) - Generative AI in Cybersecurity [0.0]
Generative Artificial Intelligence (GAI) has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes.
As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks.
The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation.
arXiv Detail & Related papers (2024-05-02T19:03:11Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection [0.0]
cybercrime has emerged as a global threat to governments, businesses, and civil societies.
This paper investigates AI-based cyber threat detection to protect our modern digital ecosystems.
arXiv Detail & Related papers (2023-10-15T09:35:56Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
This paper investigates the targeting of journalists and activists by the malware Pegasus.
Examines the far-reaching consequences of these attacks for cybersecurity policy.
Describes some of the most important tactics that businesses may use to reduce the danger of cyberattacks.
arXiv Detail & Related papers (2023-10-01T19:28:03Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
Smart grid (SG) is a complex cyber-physical system that utilizes modern cyber and physical equipment to run at an optimal operating point.
Cyberattacks are the principal threats confronting the usage and advancement of the state-of-the-art systems.
Machine learning (ML) is being used to exploit and defend the cyberattacks in SG by the attackers and system operators.
arXiv Detail & Related papers (2020-09-01T05:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.