論文の概要: Fine-tuning multilingual language models in Twitter/X sentiment analysis: a study on Eastern-European V4 languages
- arxiv url: http://arxiv.org/abs/2408.02044v1
- Date: Sun, 4 Aug 2024 14:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:25:25.473301
- Title: Fine-tuning multilingual language models in Twitter/X sentiment analysis: a study on Eastern-European V4 languages
- Title(参考訳): Twitter/X感情分析における微調整多言語モデル--東欧V4言語の研究
- Authors: Tomáš Filip, Martin Pavlíček, Petr Sosík,
- Abstract要約: 未表現言語におけるTwitter/Xデータに基づくABSAサブタスクに着目した。
我々はロシアとウクライナに対する感情の分類のためにいくつかのLSMを微調整した。
いくつかのモデルは、Twitterのマルチ言語タスクにおいて、他のモデルよりもはるかにきめ細やかに調整可能であることを示す興味深い現象をいくつか報告している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aspect-based sentiment analysis (ABSA) is a standard NLP task with numerous approaches and benchmarks, where large language models (LLM) represent the current state-of-the-art. We focus on ABSA subtasks based on Twitter/X data in underrepresented languages. On such narrow tasks, small tuned language models can often outperform universal large ones, providing available and cheap solutions. We fine-tune several LLMs (BERT, BERTweet, Llama2, Llama3, Mistral) for classification of sentiment towards Russia and Ukraine in the context of the ongoing military conflict. The training/testing dataset was obtained from the academic API from Twitter/X during 2023, narrowed to the languages of the V4 countries (Czech Republic, Slovakia, Poland, Hungary). Then we measure their performance under a variety of settings including translations, sentiment targets, in-context learning and more, using GPT4 as a reference model. We document several interesting phenomena demonstrating, among others, that some models are much better fine-tunable on multilingual Twitter tasks than others, and that they can reach the SOTA level with a very small training set. Finally we identify combinations of settings providing the best results.
- Abstract(参考訳): アスペクトベースの感情分析(ABSA)は、多数のアプローチとベンチマークを持つ標準のNLPタスクであり、大きな言語モデル(LLM)は現在の最先端技術を表している。
未表現言語におけるTwitter/Xデータに基づくABSAサブタスクに着目した。
このような狭いタスクにおいて、小さなチューニングされた言語モデルは、しばしば普遍的な大きなタスクよりも優れ、利用可能な安価なソリューションを提供する。
LLM(BERT、BERTweet、Llama2、Llama3、Mistral)を、進行中の軍事紛争の文脈でロシアとウクライナに対する感情の分類のために微調整する。
トレーニング/テストデータセットは、2023年にTwitter/Xの学術APIから取得され、V4諸国(チェコ語、スロバキア語、ポーランド語、ハンガリー語)の言語に制限された。
そして、GPT4を参照モデルとして、翻訳、感情目標、コンテキスト内学習など、さまざまな設定でパフォーマンスを測定する。
いくつかのモデルは、多言語Twitterのタスクにおいて、他のモデルよりもはるかに細かいチューニングが可能であり、非常に小さなトレーニングセットでSOTAレベルに達することができることを示す興味深い現象をいくつか報告している。
最後に、最適な結果を提供する設定の組み合わせを特定します。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual
Transfer [81.5984433881309]
本稿では,54言語にまたがる15のタスクをシーケンス・ツー・シーケンス・フォーマットで統一するBUFFETを紹介する。
BUFFETは、数発の言語間移動のための厳密で公平な評価フレームワークを確立するように設計されている。
コンテクスト内言語間移動における改善の余地は極めて大きいことが判明した。
論文 参考訳(メタデータ) (2023-05-24T08:06:33Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter [7.601937548486356]
ソーシャルメディアに拡散する誤報は、疑わしいインフォデミックになっている。
本稿では,多言語BERT(mBERT)モデルを用いて,5つの多言語対をまたいだ言語間チェックハーネス推定のための6つの手法を体系的に検討する。
以上の結果から,いくつかの言語対では,ゼロショットの言語間移動が可能であり,対象言語で訓練された単言語モデルに匹敵する性能が得られた。
論文 参考訳(メタデータ) (2022-11-09T18:18:53Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Deep Learning Models for Multilingual Hate Speech Detection [5.977278650516324]
本稿では、16の異なるソースから9言語で多言語ヘイトスピーチを大規模に分析する。
低リソース設定では、ロジスティック回帰を用いたLASER埋め込みのような単純なモデルが最善である。
ゼロショット分類の場合、イタリア語やポルトガル語のような言語は良い結果をもたらす。
論文 参考訳(メタデータ) (2020-04-14T13:14:27Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
英語以外の言語ではほとんど、あるいは全くデータがない場合に、複数の言語でのトレーニングモデルの設定を同時に検討する。
メタラーニングを用いて、この挑戦的な設定にアプローチできることが示される。
我々は、標準教師付きゼロショットのクロスランガルと、異なる自然言語理解タスクのための数ショットのクロスランガル設定を用いて実験を行った。
論文 参考訳(メタデータ) (2020-03-05T16:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。