論文の概要: Winners with Confidence: Discrete Argmin Inference with an Application to Model Selection
- arxiv url: http://arxiv.org/abs/2408.02060v1
- Date: Sun, 4 Aug 2024 15:20:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:15:41.104156
- Title: Winners with Confidence: Discrete Argmin Inference with an Application to Model Selection
- Title(参考訳): 自信を持つ勝者: モデル選択への応用とArgmin推論の離散化
- Authors: Tianyu Zhang, Hao Lee, Jing Lei,
- Abstract要約: 本稿では,ベクトル観測の最小値の指標を求める問題について検討する。
この問題は、人口/政治比較、離散的最大可能性、モデル選択に関係している。
- 参考スコア(独自算出の注目度): 11.62889979871371
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the problem of finding the index of the minimum value of a vector from noisy observations. This problem is relevant in population/policy comparison, discrete maximum likelihood, and model selection. We develop a test statistic that is asymptotically normal, even in high-dimensional settings and with potentially many ties in the population mean vector, by integrating concepts and tools from cross-validation and differential privacy. The key technical ingredient is a central limit theorem for globally dependent data. We also propose practical ways to select the tuning parameter that adapts to the signal landscape.
- Abstract(参考訳): 本研究では,雑音観測からベクトルの最小値の指数を求める問題について検討する。
この問題は、人口/政治比較、離散的最大可能性、モデル選択に関係している。
クロスバリデーションと差分プライバシーから概念とツールを統合することで、高次元の設定でも、また人口平均ベクトルが潜在的に多くの関係を持つ、漸近的に正常なテスト統計法を開発した。
重要な技術的要素は、グローバル依存データに対する中心極限定理である。
また,信号ランドスケープに適応するチューニングパラメータを選択するための実用的な方法を提案する。
関連論文リスト
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
逐次的に収集したデータの実験を適応的に選択するアクティブシーケンシャル推定の問題について検討する。
目標は、より正確なモデル推定のための実験選択ルールを設計することである。
そこで本稿では,グリーディ実験の選択手法のクラスを提案し,最大可能性の統計的解析を行う。
論文 参考訳(メタデータ) (2024-02-13T17:09:29Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
異常検出は、大多数のパターンに従わないデータポイントを見つける問題として定義される。
1クラスのサポートベクトルマシン(SVM)メソッドは、通常のデータポイントと異常を区別するための決定境界を見つけることを目的としている。
誤分類の確率が低い分布的に頑健な確率制約モデルを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:13:22Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - On the Computational Complexity of Private High-dimensional Model Selection [18.964255744068122]
プライバシー制約下での高次元疎線形回帰モデルにおけるモデル選択の問題点を考察する。
本稿では, 効率的なメトロポリス・ハスティングスアルゴリズムを提案し, 一定の規則性条件下では, 定常分布への混合時間を享受できることを確かめる。
論文 参考訳(メタデータ) (2023-10-11T19:53:15Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
本稿では,多種多様なカウンターファクトの集合を推定する確率的パラダイムを提案する。
摂動を事前分布関数によるランダム変数として扱う。
収束特性の優れた勾配ベースサンプリング器は、後方サンプルを効率的に計算する。
論文 参考訳(メタデータ) (2023-01-21T00:21:11Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - A Causal Direction Test for Heterogeneous Populations [10.653162005300608]
ほとんどの因果モデルでは、単一の同質な集団を仮定するが、これは多くの応用において成り立たない仮定である。
等質性仮定に違反した場合、そのような仮定に基づいて開発された因果モデルが正しい因果方向を識別できないことを示す。
我々は,$k$-means型クラスタリングアルゴリズムを用いて,一般的な因果方向検定統計量の調整を提案する。
論文 参考訳(メタデータ) (2020-06-08T18:59:14Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
この記事では、このトピックの最先端に関する総合的な研究について紹介する。
さまざまなテクニックの制限、メリット、コネクション、差異を強調します。
また、不適切な事前利用の問題や解決法についても述べる。
論文 参考訳(メタデータ) (2020-05-17T18:31:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。