Climate-Driven Doubling of Maize Loss Probability in U.S. Crop Insurance: Spatiotemporal Prediction and Possible Policy Responses
- URL: http://arxiv.org/abs/2408.02217v1
- Date: Mon, 5 Aug 2024 03:38:38 GMT
- Title: Climate-Driven Doubling of Maize Loss Probability in U.S. Crop Insurance: Spatiotemporal Prediction and Possible Policy Responses
- Authors: A Samuel Pottinger, Lawson Connor, Brookie Guzder-Williams, Maya Weltman-Fahs, Timothy Bowles,
- Abstract summary: We use an artificial neural network to predict future maize yields in the U.S. Corn Belt.
We find alarming changes to institutional risk exposure within the Federal Crop Insurance Program.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change not only threatens agricultural producers but also strains financial institutions. These important food system actors include government entities tasked with both insuring grower livelihoods and supporting response to continued global warming. We use an artificial neural network to predict future maize yields in the U.S. Corn Belt, finding alarming changes to institutional risk exposure within the Federal Crop Insurance Program. Specifically, our machine learning method anticipates more frequent and more severe yield losses that would result in the annual probability of Yield Protection (YP) claims to more than double at mid-century relative to simulations without continued climate change. Furthermore, our dual finding of relatively unchanged average yields paired with decreasing yield stability reveals targeted opportunities to adjust coverage formulas to include variability. This important structural shift may help regulators support grower adaptation to continued climate change by recognizing the value of risk-reducing strategies such as regenerative agriculture. Altogether, paired with open source interactive tools for deeper investigation, our risk profile simulations fill an actionable gap in current understanding, bridging granular historic yield estimation and climate-informed prediction of future insurer-relevant loss.
Related papers
- The Complexity of Extreme Climate Events on the New Zealand's Kiwifruit Industry [4.686353965780291]
We propose to examine the impacts of climate-induced extreme events, specifically frost, drought, extreme rainfall, and heatwave, on kiwifruit harvest yields.<n>These four events were selected due to their significant impacts on crop productivity and their prevalence as recorded by climate monitoring institutions in the country.<n>Our analysis reveals considerable variability in how different types of extreme event affect kiwifruit yields.
arXiv Detail & Related papers (2025-08-04T07:24:30Z) - Multi-Hazard Early Warning Systems for Agriculture with Featural-Temporal Explanations [5.363664265121231]
Climate extremes present escalating risks to agriculture.<n>Traditional single-hazard forecasting methods fall short in capturing complex interactions among concurrent climatic events.<n>In this paper, we combine sequential deep learning models and advanced Explainable Artificial Intelligence (XAI) techniques to introduce a multi-hazard forecasting framework for agriculture.
arXiv Detail & Related papers (2025-07-30T05:16:35Z) - Regional climate risk assessment from climate models using probabilistic machine learning [12.737495484442443]
GenFocal is a general-purpose, end-to-end generative framework for complex climate processes interacting at finetemporal scales.<n>It more accurately assesses extreme risk in the current climate than leading approaches.<n>GenFocal shows compelling results consistent with the literature on projecting climate impact on decadal timescales.
arXiv Detail & Related papers (2024-12-11T03:52:17Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Catastrophe Insurance: An Adaptive Robust Optimization Approach [5.877778007271621]
This work introduces a novel Adaptive Robust Optimization framework tailored for the calculation of catastrophe insurance premiums.
To the best of our knowledge, it is the first time an ARO approach has been applied to disaster insurance pricing.
Using the US flood insurance data as a case study, optimization models demonstrate effectiveness in covering losses and produce surpluses.
arXiv Detail & Related papers (2024-05-11T18:35:54Z) - Intelligent Agricultural Management Considering N$_2$O Emission and
Climate Variability with Uncertainties [5.04035338843957]
This study examines how artificial intelligence (AI) can be used in farming to boost crop yields, fine-tune use and watering, and reduce nitrate runoff and greenhouse gases.
Facing climate change and limited agricultural knowledge, we use Partially Observable Markov Decision Processes (POMDPs) with a crop simulator to model AI agents' interactions with farming environments.
Also, we develop Machine Learning (ML) models to predict N$$O emissions, integrating these predictions into the simulator.
arXiv Detail & Related papers (2024-02-13T22:29:40Z) - Temperature Monitoring of Agricultural Areas in a Secure Data Room [0.0]
Late frosts occurring shortly after the crops have sprouted have the potential to cause massive damage to plants.
In this article we present a cost-efficient temperature monitoring system for detecting and reacting to late frosts to prevent crop failures.
arXiv Detail & Related papers (2023-10-27T09:49:52Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
arXiv Detail & Related papers (2022-05-02T06:02:13Z) - DeepAg: Deep Learning Approach for Measuring the Effects of Outlier
Events on Agricultural Production and Policy [4.800161917503703]
We propose a novel framework, namely: DeepAg, that employs econometrics and measures the effects of outlier events detection using Deep Learning (DL)
We employ a DL technique called Long Short-Term Memory (LSTM) networks successfully to predict commodity production with high accuracy.
We present the implications of DeepAg on public policy, provide insights for policymakers and farmers, and for operational decisions in the agricultural ecosystem.
arXiv Detail & Related papers (2021-10-22T20:55:33Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
We present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents' class probabilities.
We additionally present PUP, a new challenging real-world autonomous driving dataset.
We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty.
arXiv Detail & Related papers (2021-04-26T10:28:34Z) - Modeling Weather-induced Home Insurance Risks with Support Vector
Machine Regression [1.776495509141596]
Insurance industry is one of the most vulnerable sectors to climate change.
We study the effect of precipitation on a joint dynamics of weather-induced home insurance claims and losses.
arXiv Detail & Related papers (2021-03-15T23:13:32Z) - The Power of Language: Understanding Sentiment Towards the Climate
Emergency using Twitter Data [0.0]
It could be speculated that there is a relationship between Crude Oil Futures and sentiment towards the Climate Emergency.
This study shows that it is possible to split the conversation surrounding the Climate Emergency into 3 distinct topics.
arXiv Detail & Related papers (2021-01-25T19:51:10Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
Farm parcel delineation provides cadastral data that is important in developing and managing climate change policies.
This data can also be useful for the agricultural insurance sector for assessing compensations following damages associated with extreme weather events.
Using satellite imaging can be a scalable and cost effective manner to perform the task of farm parcel delineation.
arXiv Detail & Related papers (2020-04-11T19:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.