Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era
- URL: http://arxiv.org/abs/2408.02242v1
- Date: Mon, 5 Aug 2024 05:27:19 GMT
- Title: Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era
- Authors: Supath Dhital,
- Abstract summary: The application of Machine Learning (ML) to hydrologic modeling is fledgling.
One of the key reasons to adopt ML algorithms over physics-based models is its computational efficiency advantage and flexibility to work with various data sets.
This paper covers the opportunities and challenges of adopting ML for hydrological modeling and subsequently how it can help to improve the simulation time of physics-based models and future works that should be addressed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of Machine Learning (ML) to hydrologic modeling is fledgling. Its applicability to capture the dependencies on watersheds to forecast better within a short period is fascinating. One of the key reasons to adopt ML algorithms over physics-based models is its computational efficiency advantage and flexibility to work with various data sets. The diverse applications, particularly in emergency response and expanding over a large scale, demand the hydrological model in a short time and make researchers adopt data-driven modeling approaches unhesitatingly. In this work, in the era of ML and deep learning (DL), how it can help to improve the overall run time of physics-based model and potential constraints that should be addressed while modeling. This paper covers the opportunities and challenges of adopting ML for hydrological modeling and subsequently how it can help to improve the simulation time of physics-based models and future works that should be addressed.
Related papers
- Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
We propose a hybrid modeling workflow for process-based hydrologic models and machine learning surrogate models.
As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge site.
Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings.
arXiv Detail & Related papers (2024-07-30T15:24:27Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
Current hydrological modeling methods combine data-driven Machine Learning algorithms and traditional physics-based models.
Despite the accuracy of ML in outcome prediction, the integration of scientific knowledge is crucial for reliable predictions.
This study introduces a Physics Informed Machine Learning model, which merges the process understanding of conceptual hydrological models with the predictive efficiency of ML algorithms.
arXiv Detail & Related papers (2024-02-21T16:26:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Automated Dissipation Control for Turbulence Simulation with Shell
Models [1.675857332621569]
The application of machine learning (ML) techniques, especially neural networks, has seen tremendous success at processing images and language.
In this work we construct a strongly simplified representation of turbulence by using the Gledzer-Ohkitani-Yamada shell model.
We propose an approach that aims to reconstruct statistical properties of turbulence such as the self-similar inertial-range scaling.
arXiv Detail & Related papers (2022-01-07T15:03:52Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
We develop a Physics Informed Machine Learning (PIML) model that combines the process understanding of conceptual hydrological model with predictive abilities of state-of-the-art ML models.
We apply the proposed model to predict the monthly time series of the target (streamflow) and intermediate variables (actual evapotranspiration) in the Narmada river basin in India.
arXiv Detail & Related papers (2021-04-22T12:13:42Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.