論文の概要: Process-constrained batch Bayesian approaches for yield optimization in multi-reactor systems
- arxiv url: http://arxiv.org/abs/2408.02551v1
- Date: Mon, 5 Aug 2024 15:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 13:17:11.972607
- Title: Process-constrained batch Bayesian approaches for yield optimization in multi-reactor systems
- Title(参考訳): プロセス制約付きバッチベイズ法によるマルチリアクタシステムにおける収率最適化
- Authors: Markus Grimm, Sébastien Paul, Pierre Chainais,
- Abstract要約: 本研究は,マルチリアクタ系における反応の収率を最適化する新しい手法を提案する。
シーケンシャルなバッチ最適化戦略において、探索とエクスプロイトの間の実験的制約とバランスを統合する。
- 参考スコア(独自算出の注目度): 2.812898346527047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The optimization of yields in multi-reactor systems, which are advanced tools in heterogeneous catalysis research, presents a significant challenge due to hierarchical technical constraints. To this respect, this work introduces a novel approach called process-constrained batch Bayesian optimization via Thompson sampling (pc-BO-TS) and its generalized hierarchical extension (hpc-BO-TS). This method, tailored for the efficiency demands in multi-reactor systems, integrates experimental constraints and balances between exploration and exploitation in a sequential batch optimization strategy. It offers an improvement over other Bayesian optimization methods. The performance of pc-BO-TS and hpc-BO-TS is validated in synthetic cases as well as in a realistic scenario based on data obtained from high-throughput experiments done on a multi-reactor system available in the REALCAT platform. The proposed methods often outperform other sequential Bayesian optimizations and existing process-constrained batch Bayesian optimization methods. This work proposes a novel approach to optimize the yield of a reaction in a multi-reactor system, marking a significant step forward in digital catalysis and generally in optimization methods for chemical engineering.
- Abstract(参考訳): ヘテロジニアス触媒研究の先進的なツールであるマルチリアクターシステムの収率の最適化は、階層的技術的制約により大きな課題を呈している。
この観点から、トンプソンサンプリング(pc-BO-TS)と一般化階層拡張(hpc-BO-TS)によるプロセス制約バッチベイズ最適化と呼ばれる新しいアプローチを導入する。
この手法はマルチリアクタシステムの効率要求に適合し、連続バッチ最適化戦略において探索とエクスプロイトの間の実験的制約とバランスを統合する。
他のベイズ最適化法よりも改善されている。
pc-BO-TSとhpc-BO-TSの性能は、REALCATプラットフォームで利用可能なマルチリアクターシステムで行った高スループット実験から得られたデータに基づいて、合成ケースや現実的なシナリオで検証される。
提案手法は、他の逐次ベイズ最適化法や既存のプロセス制約バッチベイズ最適化法よりも優れていることが多い。
本研究は, 反応の収率を最適化する新しい手法を提案し, デジタル触媒の進歩, 一般に化学工学の最適化手法について述べる。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
純粋に活用する qPO (multipoint of Optimality) による離散最適化のための獲得戦略を提案する。
本研究では, 大規模化学ライブラリのモデル誘導探索に適用し, バッチ化ベイズ最適化における最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-08T20:13:12Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Differentiable Multi-Target Causal Bayesian Experimental Design [43.76697029708785]
本稿では,ベイズ最適設計問題に対する勾配に基づくアプローチを導入し,バッチ環境で因果モデルを学習する。
既存の手法は、一連の実験を構築するためにグリーディ近似に依存している。
そこで本稿では,最適介入対象ペアの集合を取得するための,概念的にシンプルな勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-21T11:32:59Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - New Paradigms for Exploiting Parallel Experiments in Bayesian
Optimization [0.0]
本稿では,システムの構造を利用して設計空間を分割する並列BOパラダイムを提案する。
具体的には,性能関数のレベルセットに従って設計空間を分割する手法を提案する。
以上の結果から,本手法は検索時間を大幅に削減し,グローバルな(ローカルではなく)ソリューションを見つける可能性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-10-03T16:45:23Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Multi-Objective Optimization of the Textile Manufacturing Process Using
Deep-Q-Network Based Multi-Agent Reinforcement Learning [5.900286890213338]
本稿では,最適化プロセスをゲームに変換するマルチエージェント強化学習(MARL)フレームワークを提案する。
このゲームでは,複数平衡の中断を避けるために実用的選択機構が採用された。
提案したMARLシステムは,繊維のオゾン化プロセスの最適解を実現することが可能であり,従来の手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-12-02T11:37:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Simple and Scalable Parallelized Bayesian Optimization [2.512827436728378]
本稿では,非同期並列設定のためのシンプルでスケーラブルなBO法を提案する。
マルチ層パーセプトロンのベンチマーク関数とハイパーパラメータ最適化を用いて実験を行った。
論文 参考訳(メタデータ) (2020-06-24T10:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。