Non-symmetric GHZ states; weighted hypergraph and controlled-unitary graph representations
- URL: http://arxiv.org/abs/2408.02740v1
- Date: Mon, 5 Aug 2024 18:00:18 GMT
- Title: Non-symmetric GHZ states; weighted hypergraph and controlled-unitary graph representations
- Authors: Hrachya Zakaryan, Konstantinos-Rafail Revis, Zahra Raissi,
- Abstract summary: Non-symmetric GHZ states are multipartite entangled states with potential applications in quantum information.
We introduce two novel graph formalisms and stabilizers for non-symmetric GHZ states.
Our findings enhance the understanding of non-symmetric GHZ states and their potential applications in quantum information science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-symmetric GHZ states ($n$-GHZ$_\alpha$), characterized by unequal superpositions of $|00...0>$ and $|11...1>$, represent a significant yet underexplored class of multipartite entangled states with potential applications in quantum information. Despite their importance, the lack of a well-defined stabilizer formalism and corresponding graph representation has hindered their comprehensive study. In this paper, we address this gap by introducing two novel graph formalisms and stabilizers for non-symmetric GHZ states. First, we provide a weighted hypergraph representation and demonstrate that non-symmetric GHZ states are local unitary (LU) equivalent to fully connected weighted hypergraphs. Although these weighted hypergraphs are not stabilizer states, we show that they can be stabilized using local operations, and an ancilla. We further extend this framework to qudits, offering a specific form for non-symmetric qudit GHZ states and their LU equivalent weighted qudit hypergraphs. Second, we propose a graph formalism using controlled-unitary (CU) operations, showing that non-symmetric qudit GHZ states can be described using star-shaped CU graphs. Our findings enhance the understanding of non-symmetric GHZ states and their potential applications in quantum information science.
Related papers
- Nonclassical Nullifiers for Quantum Hypergraph States [0.0]
Quantum hypergraph states form a generalisation of the graph state formalism.
Networks of such states are able to achieve universality for continuous variable measurement based quantum computation.
arXiv Detail & Related papers (2025-02-04T11:06:19Z) - Calibrated hypergraph states: II calibrated hypergraph state construction and applications [0.0]
We introduce and investigate calibrated hypergraph states, an extension of weighted hypergraph states codified by hypergraphs equipped with calibrations.
We build upon the graded $varOmega$ monadic framework worked out in the companion paper, focusing on qudits over a generic Galois ring.
arXiv Detail & Related papers (2025-01-31T08:57:56Z) - Hypergraphs as Weighted Directed Self-Looped Graphs: Spectral Properties, Clustering, Cheeger Inequality [40.215737469808026]
Hypergraphs arise when studying group relations and have been widely used in the field of machine learning.
There has not been a unified formulation of hypergraphs, yet the recently proposed edge-dependent Rayleigh weights (EDVW) modeling is one of the most generalized modeling methods of hypergraphs.
We propose our definitions of hypergraph Quotient, NCut, boundary/cut, volume, and conductance, which are consistent with the corresponding definitions on graphs.
Then, we prove that the normalized hypergraph Laplacian is associated with the NCut value, which inspires our HyperClus-G algorithm for spectral clustering
arXiv Detail & Related papers (2024-10-23T05:16:48Z) - Local equivalence of stabilizer states: a graphical characterisation [0.0]
A fundamental property of graph states is that applying a local complementation results in a graph that represents the same entanglement as the original.
This property served as the cornerstone for capturing non-trivial quantum properties in a simple graphical manner.
We introduce a generalisation of local complementation which graphically characterises the LU-equivalence of graph states.
arXiv Detail & Related papers (2024-09-30T10:51:15Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Redundant string symmetry-based error correction: Demonstrations on quantum devices [0.0]
Computational power in measurement-based quantum computing stems from the symmetry-protected topological (SPT) order of entangled resource states.
We introduce a quantum error correction approach using redundant nonlocal symmetry of the resource state.
We identify the underlying redundant-SPT order as error-protected degeneracies in the entanglement spectrum.
arXiv Detail & Related papers (2023-10-19T16:05:43Z) - SU(d)-Symmetric Random Unitaries: Quantum Scrambling, Error Correction,
and Machine Learning [11.861283136635837]
We show that in the presence of SU(d) symmetry, the local conserved quantities would exhibit residual values even at $t rightarrow infty$.
We also show that SU(d)-symmetric unitaries can be used to constructally optimal codes.
We derive an overpartameterization threshold via the quantum neural kernel.
arXiv Detail & Related papers (2023-09-28T16:12:31Z) - Symmetric hypergraph states: Entanglement quantification and robust Bell
nonlocality [0.0]
We quantify entanglement and nonlocality for large classes of quantum hypergraph states.
We recognize the resemblance between symmetric graph states and symmetric hypergraph states.
arXiv Detail & Related papers (2023-02-03T12:49:32Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.