Certifiably Robust Policies for Uncertain Parametric Environments
- URL: http://arxiv.org/abs/2408.03093v3
- Date: Wed, 30 Oct 2024 11:55:41 GMT
- Title: Certifiably Robust Policies for Uncertain Parametric Environments
- Authors: Yannik Schnitzer, Alessandro Abate, David Parker,
- Abstract summary: We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters.
We learn and analyse IMDPs for a set of unknown sample environments induced by parameters.
We show that our approach produces tight bounds on a policy's performance with high confidence.
- Score: 57.2416302384766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
Related papers
- R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
arXiv Detail & Related papers (2024-09-21T18:32:44Z) - Wasserstein Distributionally Robust Policy Evaluation and Learning for
Contextual Bandits [18.982448033389588]
Off-policy evaluation and learning are concerned with assessing a given policy and learning an optimal policy from offline data without direct interaction with the environment.
To account for the effect of different environments during learning and execution, distributionally robust optimization (DRO) methods have been developed.
We propose a novel DRO approach that employs the Wasserstein distance instead.
arXiv Detail & Related papers (2023-09-15T20:21:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness
to Model Misspecification [22.241676350331968]
This study focuses on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values.
The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment.
Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.
arXiv Detail & Related papers (2022-11-07T10:18:31Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
We study average-reward Markov decision processes (AMDPs) and develop novel first-order methods with strong theoretical guarantees for both policy optimization and policy evaluation.
By combining the policy evaluation and policy optimization parts, we establish sample complexity results for solving AMDPs under both generative and Markovian noise models.
arXiv Detail & Related papers (2022-05-11T23:02:46Z) - Uncertainty Aware System Identification with Universal Policies [45.44896435487879]
Sim2real transfer is concerned with transferring policies trained in simulation to potentially noisy real world environments.
We propose Uncertainty-aware policy search (UncAPS), where we use Universal Policy Network (UPN) to store simulation-trained task-specific policies.
We then employ robust Bayesian optimisation to craft robust policies for the given environment by combining relevant UPN policies in a DR like fashion.
arXiv Detail & Related papers (2022-02-11T18:27:23Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
Entropy Principle Based Framework [2.741266294612776]
We present a framework to address a class of sequential decision making problems.
Our framework features learning the optimal control policy with robustness to noisy data.
arXiv Detail & Related papers (2020-06-17T04:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.