論文の概要: Few-Shot Transfer Learning for Individualized Braking Intent Detection on Neuromorphic Hardware
- arxiv url: http://arxiv.org/abs/2408.03336v1
- Date: Sun, 21 Jul 2024 15:35:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:39:15.195564
- Title: Few-Shot Transfer Learning for Individualized Braking Intent Detection on Neuromorphic Hardware
- Title(参考訳): ニューロモルフィックハードウェアにおける個別ブレーキインテント検出のためのFew-Shot Transfer Learning
- Authors: Nathan Lutes, Venkata Sriram Siddhardh Nadendla, K. Krishnamurthy,
- Abstract要約: 本研究では、BrainChip上の畳み込みスパイクニューラルネットワーク(CSNN)をトレーニングし、実装するために、数発の転送学習手法の使用について検討する。
その結果、ネットワーク推論にAkida AKD1000プロセッサを使用すると、レイテンシが1.3倍の97%以上のエネルギー削減が達成された。
- 参考スコア(独自算出の注目度): 0.21847754147782888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: This work explores use of a few-shot transfer learning method to train and implement a convolutional spiking neural network (CSNN) on a BrainChip Akida AKD1000 neuromorphic system-on-chip for developing individual-level, instead of traditionally used group-level, models using electroencephalographic data. The efficacy of the method is studied on an advanced driver assist system related task of predicting braking intention. Main Results: Efficacy of the above methodology to develop individual specific braking intention predictive models by rapidly adapting the group-level model in as few as three training epochs while achieving at least 90% accuracy, true positive rate and true negative rate is presented. Further, results show an energy reduction of over 97% with only a 1.3x increase in latency when using the Akida AKD1000 processor for network inference compared to an Intel Xeon CPU. Similar results were obtained in a subsequent ablation study using a subset of five out of 19 channels. Significance: Especially relevant to real-time applications, this work presents an energy-efficient, few-shot transfer learning method that is implemented on a neuromorphic processor capable of training a CSNN as new data becomes available, operating conditions change, or to customize group-level models to yield personalized models unique to each individual.
- Abstract(参考訳): 目的:本研究は、脳チップのAkida AKD1000ニューロモルフィックシステム上で、従来の脳波データを用いたグループレベルのモデルではなく、個々のレベルを開発するための、畳み込みスパイクニューラルネットワーク(CSNN)のトレーニングと実装に、数発のトランスファー学習手法を使用することを検討する。
本手法の有効性について,ブレーキ意図を予測する先進運転支援システム関連課題について検討した。
主な結果: グループレベルのモデルを3つの訓練エポックに迅速に適応させ, 少なくとも90%の精度, 正の正の率, 正の負の率を達成し, 個別の制動意図予測モデルを開発するための方法論の有効性を示す。
さらに、Akida AKD1000プロセッサをIntel Xeon CPUと比較すると、レイテンシが1.3倍の97%以上のエネルギー削減効果を示した。
同様の結果は、19チャンネル中5チャンネルのサブセットを用いて、その後のアブレーション研究で得られた。
意義:本研究は,新たなデータが利用可能になるとCSNNをトレーニングし,操作条件が変化し,グループレベルのモデルをカスタマイズし,個々の個人固有のパーソナライズされたモデルを生成するニューロモルフィックプロセッサに実装した,エネルギー効率のよい,数発のトランスファー学習手法を提案する。
関連論文リスト
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - Diffusion-based Neural Network Weights Generation [85.6725307453325]
データセット条件付き事前学習重み抽出による効率よく適応的な伝達学習手法を提案する。
具体的には、ニューラルネットワークの重みを再構築できる変分オートエンコーダを備えた潜時拡散モデルを用いる。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Transfer learning for predicting source terms of principal component
transport in chemically reactive flow [0.40964539027092917]
本研究の目的は,様々な移動学習モデルを用いて,必要な学習サンプルの数を削減できるかどうかを評価することである。
次に、スパースデータセットを用いたANNモデルのトレーニングに、3つのトランスファー学習戦略を適用する。
ANNモデルのトレーニングが正規化項によって制限されている場合、スパースデータセットによる縮小順序モデルの性能は著しく向上する。
論文 参考訳(メタデータ) (2023-12-01T05:18:35Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
新しいタイプのニューラルネットワークは、高速ニューラルネットワークパラダイムを用いて提示される。
提案したエミュレータを組み込んだニューラルネットワークは,予測精度を損なうことなく,ほぼ瞬時に学習できることが判明した。
論文 参考訳(メタデータ) (2023-09-12T22:34:34Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Towards physiology-informed data augmentation for EEG-based BCIs [24.15108821320151]
本稿では,手元に設定したデータから新たなデータを生成することにより,トレーニングデータを増強する新しい手法を提案する。
本書では,本手法を解説し,参加者非依存型運動画像分類のための第1次予備結果を示す。
論文 参考訳(メタデータ) (2022-03-27T20:59:40Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。