論文の概要: Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2206.07649v1
- Date: Tue, 14 Jun 2022 11:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 15:11:52.857040
- Title: Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised
Convolutional Neural Networks
- Title(参考訳): 重み付き対数量子畳み込みニューラルネットワークを用いた心房細動検出
- Authors: Xiu Qi Chang, Ann Feng Chew, Benjamin Chen Ming Choong, Shuhui Wang,
Rui Han, Wang He, Li Xiaolin, Rajesh C. Panicker, Deepu John
- Abstract要約: 心電図信号から心房細動を検出する畳み込みニューラルネットワークモデルを開発した。
このモデルは、限られた可変長の入力データで訓練されているにもかかわらず、高い性能を示す。
最終モデルは91.1%のモデル圧縮比を達成し、高いモデル精度は91.7%、損失は1%未満であった。
- 参考スコア(独自算出の注目度): 25.160063477248904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNN) are a promising tool in medical applications.
However, the implementation of complex DNNs on battery-powered devices is
challenging due to high energy costs for communication. In this work, a
convolutional neural network model is developed for detecting atrial
fibrillation from electrocardiogram (ECG) signals. The model demonstrates high
performance despite being trained on limited, variable-length input data.
Weight pruning and logarithmic quantisation are combined to introduce sparsity
and reduce model size, which can be exploited for reduced data movement and
lower computational complexity. The final model achieved a 91.1% model
compression ratio while maintaining high model accuracy of 91.7% and less than
1% loss.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は医療応用において有望なツールである。
しかし、電池駆動デバイスにおける複雑なDNNの実装は、通信コストが高いため困難である。
本研究では,心電図(ECG)信号から心房細動を検出する畳み込みニューラルネットワークモデルを開発した。
このモデルは、限られた可変長の入力データで訓練されているにもかかわらず、高い性能を示す。
重プルーニングと対数量子化を組み合わせて、スパーシティを導入し、モデルサイズを削減し、データ移動の低減と計算複雑性の低減に活用することができる。
最終モデルは91.1%のモデル圧縮比を達成し、高いモデル精度は91.7%、損失は1%以下となった。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - MC-QDSNN: Quantized Deep evolutionary SNN with Multi-Dendritic Compartment Neurons for Stress Detection using Physiological Signals [1.474723404975345]
本研究では,時系列データの効率的な処理の代替手段として,MCLeaky(Multi-Compartment Leaky)ニューロンを提案する。
提案したMCLeakyニューロンに基づくスパイキングニューラルネットワークモデルとその量子化モデルは、最先端(SOTA)スパイキングLSTMに対してベンチマークされた。
その結果、MCLeaky活性化ニューロンを持つネットワークは、98.8%の精度でストレスを検出することができた。
論文 参考訳(メタデータ) (2024-10-07T12:48:03Z) - Few-Shot Transfer Learning for Individualized Braking Intent Detection on Neuromorphic Hardware [0.21847754147782888]
本研究では、BrainChip上の畳み込みスパイクニューラルネットワーク(CSNN)をトレーニングし、実装するために、数発の転送学習手法の使用について検討する。
その結果、ニューロモルフィックハードウェアのエネルギー効率は97%以上低下し、レイテンシは1.3*しか増加しなかった。
論文 参考訳(メタデータ) (2024-07-21T15:35:46Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
エネルギー効率と低レイテンシは、ウェアラブルAIを活用した人間の活動認識システムにとって重要な要件である。
スパイクベースのワークアウト認識システムは、従来のニューラルネットワークを備えた一般的なミリワットRISC-VベースマルチコアプロセッサGAP8に匹敵する精度を達成することができる。
論文 参考訳(メタデータ) (2023-08-01T18:59:06Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes [50.00272243518593]
ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は問題の多いままである。
我々は低電圧状態におけるエネルギー精度のトレードオフを処理する新しいアドオンモジュールであるNeuralFuseを開発した。
1%のビットエラー率で、NeuralFuseはアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
論文 参考訳(メタデータ) (2023-06-29T11:38:22Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Robust Peak Detection for Holter ECGs by Self-Organized Operational
Neural Networks [12.773050144952593]
ディープ畳み込みニューラルネットワーク(CNN)はホルターモニタで最先端のパフォーマンスレベルを達成した。
本研究では,生成ニューロンを有する1次元自己組織型ONN(Self-ONNs)を提案する。
その結果、CPSCデータセットでは99.10%のF1スコア、99.79%の感度、98.42%の正の予測性が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-30T19:45:06Z) - Multistage Pruning of CNN Based ECG Classifiers for Edge Devices [9.223908421919733]
畳み込みニューラルネットワーク(CNN)に基づくディープラーニングは、ECGの異常なビートを検出するのに成功している。
既存のCNNモデルの計算複雑性は、低消費電力エッジデバイスに実装することを禁止している。
本稿では,CNNモデルの複雑性を低減し,性能を損なうことなく,新たなマルチステージプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T17:51:15Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - Neural networks with late-phase weights [66.72777753269658]
学習後期に重みのサブセットを組み込むことで,SGDの解をさらに改善できることを示す。
学習の終わりに、重み空間における空間平均を取ることにより、1つのモデルを取得する。
論文 参考訳(メタデータ) (2020-07-25T13:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。