Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles
- URL: http://arxiv.org/abs/2408.03435v1
- Date: Tue, 6 Aug 2024 20:21:53 GMT
- Title: Communication-Aware Consistent Edge Selection for Mobile Users and Autonomous Vehicles
- Authors: Nazish Tahir, Ramviyas Parasuraman, Haijian Sun,
- Abstract summary: Offloading time-sensitive, computationally intensive tasks can enhance service efficiency.
This paper proposes a deep reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm.
A joint allocation method of communication and switching of APs is proposed to minimize computational load, service latency, and interruptions.
- Score: 1.2453219864236245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offloading time-sensitive, computationally intensive tasks-such as advanced learning algorithms for autonomous driving-from vehicles to nearby edge servers, vehicle-to-infrastructure (V2I) systems, or other collaborating vehicles via vehicle-to-vehicle (V2V) communication enhances service efficiency. However, whence traversing the path to the destination, the vehicle's mobility necessitates frequent handovers among the access points (APs) to maintain continuous and uninterrupted wireless connections to maintain the network's Quality of Service (QoS). These frequent handovers subsequently lead to task migrations among the edge servers associated with the respective APs. This paper addresses the joint problem of task migration and access-point handover by proposing a deep reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm. A joint allocation method of communication and computation of APs is proposed to minimize computational load, service latency, and interruptions with the overarching goal of maximizing QoS. We implement and evaluate our proposed framework on simulated experiments to achieve smooth and seamless task switching among edge servers, ultimately reducing latency.
Related papers
- Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - A Deep RL Approach on Task Placement and Scaling of Edge Resources for Cellular Vehicle-to-Network Service Provisioning [6.625994697789603]
We tackle the interdependent problems of service task placement and scaling of edge resources.
We introduce a Deep Hybrid Policy Gradient (DHPG), a Deep Reinforcement Learning (DRL) approach for hybrid action spaces.
The performance of DHPG is evaluated against several state-of-the-art (SoA) solutions through simulations employing a real-world C-V2N traffic dataset.
arXiv Detail & Related papers (2023-05-16T22:19:19Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
We consider a base station coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner.
Due to the mobility of vehicles, the connections between the base station and ICVs are short-lived.
We propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations.
arXiv Detail & Related papers (2022-12-07T08:53:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
arXiv Detail & Related papers (2022-08-03T04:33:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
This paper formulates and solves the communication time minimization problem.
It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves.
The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
arXiv Detail & Related papers (2021-07-24T11:39:17Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - Deep Reinforcement Learning for Collaborative Edge Computing in
Vehicular Networks [40.957135065965055]
A collaborative edge computing framework is developed to reduce the computing service latency and improve service reliability for vehicular networks.
An artificial intelligence (AI) based collaborative computing approach is developed to determine the task offloading, computing, and result delivery policy for vehicles.
By our approach, the service cost, which includes computing service latency and service failure penalty, can be minimized via the optimal workload assignment and server selection.
arXiv Detail & Related papers (2020-10-05T00:06:37Z) - Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line
and Off-policy Bandit Solutions [30.606518785629046]
In a fast-varying vehicular environment, the latency in offloading arises as a result of network congestion.
We propose an on-line algorithm and an off-policy learning algorithm based on bandit theory.
We show that the proposed solutions adapt to the traffic changes of the network by selecting the least congested network.
arXiv Detail & Related papers (2020-08-14T11:48:13Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.