論文の概要: Hierarchical learning control for autonomous robots inspired by central nervous system
- arxiv url: http://arxiv.org/abs/2408.03525v1
- Date: Wed, 7 Aug 2024 03:24:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:05:27.704980
- Title: Hierarchical learning control for autonomous robots inspired by central nervous system
- Title(参考訳): 中枢神経系に触発された自律ロボットの階層的学習制御
- Authors: Pei Zhang, Zhaobo Hua, Jinliang Ding,
- Abstract要約: 本稿では,中枢神経系の階層構造を模倣した新しい階層型学習制御フレームワークを提案する。
このフレームワークは、アクティブな制御システムとパッシブな制御システムを組み合わせて、制御システムの柔軟性と信頼性の両方を改善する。
本研究は,中枢神経系における自律行動を支配する原理を明らかにし,階層的制御手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 7.227887302864789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mammals can generate autonomous behaviors in various complex environments through the coordination and interaction of activities at different levels of their central nervous system. In this paper, we propose a novel hierarchical learning control framework by mimicking the hierarchical structure of the central nervous system along with their coordination and interaction behaviors. The framework combines the active and passive control systems to improve both the flexibility and reliability of the control system as well as to achieve more diverse autonomous behaviors of robots. Specifically, the framework has a backbone of independent neural network controllers at different levels and takes a three-level dual descending pathway structure, inspired from the functionality of the cerebral cortex, cerebellum, and spinal cord. We comprehensively validated the proposed approach through the simulation as well as the experiment of a hexapod robot in various complex environments, including obstacle crossing and rapid recovery after partial damage. This study reveals the principle that governs the autonomous behavior in the central nervous system and demonstrates the effectiveness of the hierarchical control approach with the salient features of the hierarchical learning control architecture and combination of active and passive control systems.
- Abstract(参考訳): 哺乳類は、中枢神経系の様々なレベルでの活動の協調と相互作用を通じて、様々な複雑な環境で自律的な行動を生成することができる。
本稿では,中枢神経系の階層構造と協調行動と相互作用行動を模倣した新しい階層型学習制御フレームワークを提案する。
このフレームワークは、アクティブな制御システムと受動的制御システムを組み合わせて、制御システムの柔軟性と信頼性を改善し、ロボットのより多様な自律的な動作を実現する。
特に、このフレームワークは、異なるレベルで独立したニューラルネットワークコントローラのバックボーンを持ち、大脳皮質、小脳、脊髄の機能から着想を得た3レベルの二重降下経路構造を取る。
提案手法のシミュレーションと,障害物交差や部分損傷後の急激な回復を含む複雑な環境下での六足歩行ロボットの実験を総合的に検証した。
本研究は,中枢神経系の自律行動を管理する原理を明らかにし,階層型学習制御アーキテクチャの健全な特徴と能動的・受動的制御システムの組み合わせによる階層型制御アプローチの有効性を示す。
関連論文リスト
- Navigating the swarm: Deep neural networks command emergent behaviours [2.7059353835118602]
エージェント間相互作用ルールを微調整することにより,グローバルなパターンを意図した集合行動の協調構造を生成することができることを示す。
私たちの戦略では、望ましい構造を指示する相互作用ルールを見つけるために、ダイナミックスの法則に従うディープニューラルネットワークを採用しています。
本研究は, ロボット群操作, アクティブ物質組織, 生体システムにおける不明瞭な相互作用規則の解明における新たな応用の道を開くものである。
論文 参考訳(メタデータ) (2024-07-16T02:46:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Hierarchical Decentralized Deep Reinforcement Learning Architecture for
a Simulated Four-Legged Agent [0.0]
自然界では、運動の制御は階層的で分散的な方法で起こる。
そこで本研究では,シミュレートされた脚型エージェントを制御するための,分散型階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-21T07:55:33Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Self-organization of multi-layer spiking neural networks [4.859525864236446]
発達する脳における複雑な構造の形成を可能にする重要なメカニズムは、神経活動の経時的波の出現である。
多層ニューラルネットワークをシームレスに積み重ねることのできる動的システムの形でモジュール式ツールキットを提案する。
我々のフレームワークは、多層パーセプトロンからオートエンコーダまで、幅広いアーキテクチャの自己組織化に繋がる。
論文 参考訳(メタデータ) (2020-06-12T01:44:48Z) - Decentralized Deep Reinforcement Learning for a Distributed and Adaptive
Locomotion Controller of a Hexapod Robot [0.6193838300896449]
昆虫運動制御において,異なる脚の協調のための分散型組織を提案する。
同時的な局所構造は、歩行行動を改善することができる。
論文 参考訳(メタデータ) (2020-05-21T11:40:37Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。