論文の概要: NeurAM: nonlinear dimensionality reduction for uncertainty quantification through neural active manifolds
- arxiv url: http://arxiv.org/abs/2408.03534v1
- Date: Wed, 7 Aug 2024 04:27:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:53:42.536928
- Title: NeurAM: nonlinear dimensionality reduction for uncertainty quantification through neural active manifolds
- Title(参考訳): NeurAM: ニューラルアクティブ多様体による不確かさ定量化のための非線形次元性低減
- Authors: Andrea Zanoni, Gianluca Geraci, Matteo Salvador, Alison L. Marsden, Daniele E. Schiavazzi,
- Abstract要約: 我々はオートエンコーダを利用して1次元のニューラルアクティブ多様体(NeurAM)をモデル出力の可変性を捉える。
分散を低減した多要素サンプリング推定器にNeurAMをどのように利用できるかを示す。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new approach for nonlinear dimensionality reduction, specifically designed for computationally expensive mathematical models. We leverage autoencoders to discover a one-dimensional neural active manifold (NeurAM) capturing the model output variability, plus a simultaneously learnt surrogate model with inputs on this manifold. The proposed dimensionality reduction framework can then be applied to perform outer loop many-query tasks, like sensitivity analysis and uncertainty propagation. In particular, we prove, both theoretically under idealized conditions, and numerically in challenging test cases, how NeurAM can be used to obtain multifidelity sampling estimators with reduced variance by sampling the models on the discovered low-dimensional and shared manifold among models. Several numerical examples illustrate the main features of the proposed dimensionality reduction strategy, and highlight its advantages with respect to existing approaches in the literature.
- Abstract(参考訳): 本稿では,計算コストの高い数理モデルに特化して設計された非線形次元減少に対する新しいアプローチを提案する。
オートエンコーダを用いて1次元のニューラルアクティブ多様体(NeurAM)がモデル出力の変動を捉え、同時に学習したサロゲートモデルをこの多様体に入力する。
提案した次元減少フレームワークは、感度解析や不確実性伝播といった外ループ多値処理に応用できる。
特に、理論上は理想化された条件下で、また挑戦的なテストケースでは数値的にも、NeurAMがモデル間で発見された低次元および共有多様体上のモデルをサンプリングすることによって、ばらつきを低減した多相サンプリング推定器を得ることができることを示す。
いくつかの数値的な例は、提案された次元削減戦略の主な特徴を示し、文献における既存のアプローチに関してその利点を強調している。
関連論文リスト
- Proximal Interacting Particle Langevin Algorithms [0.0]
本稿では,潜時変動モデルにおける推論と学習のためのPIPLAアルゴリズムを提案する。
非微分不可能な統計モデルにおけるパラメータ推定の問題に合わせた、新しい近位IPLAファミリー内のいくつかの変種を提案する。
我々の理論と実験は、PIPLAファミリーが非微分可能モデルの潜在変数モデルにおけるパラメータ推定問題のデファクト選択であることを示している。
論文 参考訳(メタデータ) (2024-06-20T13:16:41Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Low-rank Characteristic Tensor Density Estimation Part II: Compression
and Latent Density Estimation [31.631861197477185]
生成確率モデルを学習することは、機械学習における中核的な問題である。
本稿では,共同次元化と非パラメトリック密度推定の枠組みを提案する。
提案手法は, 回帰処理, サンプリング, 異常検出において, 極めて有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-06-20T00:38:56Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Bayesian neural networks and dimensionality reduction [4.039245878626346]
そのような問題に対するモデルに基づくアプローチのクラスは、未知の非線形回帰関数における潜在変数を含む。
VAEは、近似を用いて計算をトラクタブルにする人工知能ニューラルネットワーク(ANN)である。
潜在変数を持つANNモデルにおいて,マルコフ連鎖モンテカルロサンプリングアルゴリズムをベイズ推定のために展開する。
論文 参考訳(メタデータ) (2020-08-18T17:11:07Z) - Estimating Model Uncertainty of Neural Networks in Sparse Information
Form [39.553268191681376]
ディープニューラルネットワーク(DNN)におけるモデル不確実性のスパース表現について述べる。
我々の研究の重要な洞察は、情報行列はそのスペクトルにおいてスパースである傾向があることである。
DNNにおけるモデル不確実性を表すために,情報形式が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-20T18:09:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。