Generative Design of Periodic Orbits in the Restricted Three-Body Problem
- URL: http://arxiv.org/abs/2408.03691v1
- Date: Wed, 7 Aug 2024 11:13:19 GMT
- Title: Generative Design of Periodic Orbits in the Restricted Three-Body Problem
- Authors: Alvaro Francisco Gil, Walther Litteri, Victor Rodriguez-Fernandez, David Camacho, Massimiliano Vasile,
- Abstract summary: This work investigates the use of Variational Autoencoder (VAE) and its internal representation to generate periodic orbits.
We utilize a comprehensive dataset of periodic orbits in the Circular Restricted Three-Body Problem (CR3BP) to train deep-learning architectures that capture key orbital characteristics.
- Score: 3.3810628880631226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Three-Body Problem has fascinated scientists for centuries and it has been crucial in the design of modern space missions. Recent developments in Generative Artificial Intelligence hold transformative promise for addressing this longstanding problem. This work investigates the use of Variational Autoencoder (VAE) and its internal representation to generate periodic orbits. We utilize a comprehensive dataset of periodic orbits in the Circular Restricted Three-Body Problem (CR3BP) to train deep-learning architectures that capture key orbital characteristics, and we set up physical evaluation metrics for the generated trajectories. Through this investigation, we seek to enhance the understanding of how Generative AI can improve space mission planning and astrodynamics research, leading to novel, data-driven approaches in the field.
Related papers
- Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - A Survey of Generative Techniques for Spatial-Temporal Data Mining [93.55501980723974]
This paper focuses on the integration of generative techniques into spatial-temporal data mining.
The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods.
It also introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline.
arXiv Detail & Related papers (2024-05-15T12:07:43Z) - Deep Learning Based Dynamics Identification and Linearization of Orbital Problems using Koopman Theory [0.0]
We propose a framework for simultaneous system identification and global linearization of the Two-Body Problem and Circular Restricted Three-Body Problem.
This paper displays the ability of the Koopman operator to generalize to various other Two-Body systems without the need for retraining.
arXiv Detail & Related papers (2024-03-13T21:11:58Z) - Towards a Machine Learning-Based Approach to Predict Space Object
Density Distributions [0.7652747219811166]
Current models for examining Anthropogenic Space Objects (ASOs) are computationally demanding.
We propose a novel machine learning-based model, as an extension of the MIT Orbital Capacity Tool (MOCAT)
We study how different deep learning-based solutions can potentially be good candidates for ASO propagation and manage the high-dimensionality of the data.
arXiv Detail & Related papers (2024-01-08T19:43:30Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
We propose a novel two-stage generative adversarial framework to generate the continuous trajectory on the road network.
Specifically, we build the generator under the human mobility hypothesis of the A* algorithm to learn the human mobility behavior.
For the discriminator, we combine the sequential reward with the mobility yaw reward to enhance the effectiveness of the generator.
arXiv Detail & Related papers (2023-01-16T09:54:02Z) - Artificial Intelligence to Enhance Mission Science Output for In-situ
Observations: Dealing with the Sparse Data Challenge [0.0]
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time.
New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, will need to be developed to meet this Sparse Data challenge.
arXiv Detail & Related papers (2022-12-26T20:05:21Z) - NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning [1.9798034349981157]
We propose Neural Time Fields (NTFields) for robot motion planning in cluttered scenarios.
Our framework represents a wave propagation model generating continuous arrival time to find path solutions informed by a nonlinear first-order PDE called Eikonal Equation.
We evaluate our method in various cluttered 3D environments, including the Gibson dataset, and demonstrate its ability to solve motion planning problems for 4-DOF and 6-DOF robot manipulators.
arXiv Detail & Related papers (2022-09-30T22:34:54Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - SPATE-GAN: Improved Generative Modeling of Dynamic Spatio-Temporal
Patterns with an Autoregressive Embedding Loss [4.504870356809408]
We propose a novel loss objective combined with -GAN based on an autogressive embedding to reinforce the learning oftemporal dynamics.
We show that our embedding loss improves performance without any changes to the architecture of -GAN, highlighting our model's increased capacity for autocorrelationre structures.
arXiv Detail & Related papers (2021-09-30T12:10:05Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.