Question Rephrasing for Quantifying Uncertainty in Large Language Models: Applications in Molecular Chemistry Tasks
- URL: http://arxiv.org/abs/2408.03732v1
- Date: Wed, 7 Aug 2024 12:38:23 GMT
- Title: Question Rephrasing for Quantifying Uncertainty in Large Language Models: Applications in Molecular Chemistry Tasks
- Authors: Zizhang Chen, Pengyu Hong, Sandeep Madireddy,
- Abstract summary: We present a novel Question Rephrasing technique to evaluate the input uncertainty of large language models (LLMs)
This technique is integrated with sampling methods that measure the output uncertainty of LLMs, thereby offering a more comprehensive uncertainty assessment.
- Score: 4.167519875804914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification enables users to assess the reliability of responses generated by large language models (LLMs). We present a novel Question Rephrasing technique to evaluate the input uncertainty of LLMs, which refers to the uncertainty arising from equivalent variations of the inputs provided to LLMs. This technique is integrated with sampling methods that measure the output uncertainty of LLMs, thereby offering a more comprehensive uncertainty assessment. We validated our approach on property prediction and reaction prediction for molecular chemistry tasks.
Related papers
- MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty [10.154013836043816]
We propose a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks.
Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty.
We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
arXiv Detail & Related papers (2024-08-13T11:17:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
We study the problem of uncertainty estimation and calibration for LLMs.
We propose a supervised approach that leverages labeled datasets to estimate the uncertainty in LLMs' responses.
Our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
arXiv Detail & Related papers (2024-04-24T17:10:35Z) - Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification [116.77055746066375]
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output.
We propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification.
arXiv Detail & Related papers (2024-03-07T17:44:17Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Quantifying Uncertainty in Natural Language Explanations of Large
Language Models [29.34960984639281]
Large Language Models (LLMs) are increasingly used as powerful tools for high-stakes natural language processing (NLP) applications.
We propose two novel metrics -- $textitVerbalized Uncertainty$ and $textitProbing Uncertainty$ -- to quantify the uncertainty of generated explanations.
Our empirical analysis of benchmark datasets reveals that verbalized uncertainty is not a reliable estimate of explanation confidence.
arXiv Detail & Related papers (2023-11-06T21:14:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.