Black-box Uncertainty Quantification Method for LLM-as-a-Judge
- URL: http://arxiv.org/abs/2410.11594v1
- Date: Tue, 15 Oct 2024 13:29:22 GMT
- Title: Black-box Uncertainty Quantification Method for LLM-as-a-Judge
- Authors: Nico Wagner, Michael Desmond, Rahul Nair, Zahra Ashktorab, Elizabeth M. Daly, Qian Pan, Martín Santillán Cooper, James M. Johnson, Werner Geyer,
- Abstract summary: We introduce a novel method for quantifying uncertainty designed to enhance the trustworthiness of LLM-as-a-Judge evaluations.
The method quantifies uncertainty by analyzing the relationships between generated assessments and possible ratings.
By cross-evaluating these relationships and constructing a confusion matrix based on token probabilities, the method derives labels of high or low uncertainty.
- Score: 13.45579129351493
- License:
- Abstract: LLM-as-a-Judge is a widely used method for evaluating the performance of Large Language Models (LLMs) across various tasks. We address the challenge of quantifying the uncertainty of LLM-as-a-Judge evaluations. While uncertainty quantification has been well-studied in other domains, applying it effectively to LLMs poses unique challenges due to their complex decision-making capabilities and computational demands. In this paper, we introduce a novel method for quantifying uncertainty designed to enhance the trustworthiness of LLM-as-a-Judge evaluations. The method quantifies uncertainty by analyzing the relationships between generated assessments and possible ratings. By cross-evaluating these relationships and constructing a confusion matrix based on token probabilities, the method derives labels of high or low uncertainty. We evaluate our method across multiple benchmarks, demonstrating a strong correlation between the accuracy of LLM evaluations and the derived uncertainty scores. Our findings suggest that this method can significantly improve the reliability and consistency of LLM-as-a-Judge evaluations.
Related papers
- Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates [10.091146498861333]
Commercial large language models (LLMs) like GPT-4 have been recently employed to evaluate and compare different alignment approaches.
We develop a framework to evaluate, compare, and visualize the reliability and alignment of LLM judges.
arXiv Detail & Related papers (2024-08-23T11:49:01Z) - Unc-TTP: A Method for Classifying LLM Uncertainty to Improve In-Context Example Selection [6.813733517894384]
Large Language Models (LLMs) have demonstrated exceptional performance across various downstream tasks.
It is challenging for users to discern whether the responses are generated with certainty or are fabricated to meet user expectations.
We propose a novel Uncertainty Tripartite Testing Paradigm (Unc-TTP) to classify LLM uncertainty.
arXiv Detail & Related papers (2024-08-17T11:33:23Z) - Question Rephrasing for Quantifying Uncertainty in Large Language Models: Applications in Molecular Chemistry Tasks [4.167519875804914]
We present a novel Question Rephrasing technique to evaluate the input uncertainty of large language models (LLMs)
This technique is integrated with sampling methods that measure the output uncertainty of LLMs, thereby offering a more comprehensive uncertainty assessment.
arXiv Detail & Related papers (2024-08-07T12:38:23Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
We study the problem of uncertainty estimation and calibration for LLMs.
We propose a supervised approach that leverages labeled datasets to estimate the uncertainty in LLMs' responses.
Our method is easy to implement and adaptable to different levels of model accessibility including black box, grey box, and white box.
arXiv Detail & Related papers (2024-04-24T17:10:35Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, prompting a surge in their practical applications.
This paper introduces TrustScore, a framework based on the concept of Behavioral Consistency, which evaluates whether an LLMs response aligns with its intrinsic knowledge.
arXiv Detail & Related papers (2024-02-19T21:12:14Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.