論文の概要: Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics
- arxiv url: http://arxiv.org/abs/2408.03884v1
- Date: Mon, 29 Jul 2024 15:43:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:39:15.181098
- Title: Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics
- Title(参考訳): 安全・信頼性・説明可能なマルチエージェント強化学習のための量子コンピューティングとニューロモルフィックコンピューティング:自律ロボットにおける最適制御
- Authors: Mazyar Taghavi,
- Abstract要約: 本稿では,安全性,信頼性,説明可能なマルチエージェント強化学習(MARL)における量子コンピューティングとニューロモルフィックコンピューティングの利用について検討する。
目的は、自律エージェントの動作を最適化し、安全性、信頼性、説明可能性を確保するという課題に対処することであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the utilization of Quantum Computing and Neuromorphic Computing for Safe, Reliable, and Explainable Multi_Agent Reinforcement Learning (MARL) in the context of optimal control in autonomous robotics. The objective was to address the challenges of optimizing the behavior of autonomous agents while ensuring safety, reliability, and explainability. Quantum Computing techniques, including Quantum Approximate Optimization Algorithm (QAOA), were employed to efficiently explore large solution spaces and find approximate solutions to complex MARL problems. Neuromorphic Computing, inspired by the architecture of the human brain, provided parallel and distributed processing capabilities, which were leveraged to develop intelligent and adaptive systems. The combination of these technologies held the potential to enhance the safety, reliability, and explainability of MARL in autonomous robotics. This research contributed to the advancement of autonomous robotics by exploring cutting-edge technologies and their applications in multi-agent systems. Codes and data are available.
- Abstract(参考訳): 本稿では,自律ロボット工学における最適制御の文脈における,量子コンピューティングとニューロモルフィックコンピューティングの安全性,信頼性,説明可能なマルチエージェント強化学習(MARL)の利用について検討する。
目的は、自律エージェントの動作を最適化し、安全性、信頼性、説明可能性を確保するという課題に対処することであった。
量子近似最適化アルゴリズム(QAOA)を含む量子コンピューティング技術は、大規模な解空間を効率的に探索し、複雑なMARL問題の近似解を求めるために用いられた。
人間の脳のアーキテクチャにインスパイアされたニューロモルフィックコンピューティングは、インテリジェントで適応的なシステムを開発するために活用された並列および分散処理機能を提供した。
これらの技術の組み合わせは、自律ロボット工学におけるMARLの安全性、信頼性、説明可能性を高める可能性を持っていた。
この研究は、最先端技術とそのマルチエージェントシステムへの応用を探求し、自律ロボット技術の進歩に寄与した。
コードとデータは利用可能である。
関連論文リスト
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
マルチエージェントAIモデルは、新しい金属合金の発見を自動化するために使用される。
MLをベースとした原子間ポテンシャルをモデルとした立方晶(bcc)合金のNbMoTa族に着目した。
LLMをベースとしたエージェントの動的協調により、GNNの予測力を相乗化することにより、システムは巨大な合金設計空間を自律的にナビゲートする。
論文 参考訳(メタデータ) (2024-10-17T17:06:26Z) - Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey [14.73689900685646]
強化学習(Reinforcement Learning, RL)は、シーケンシャルな意思決定のための強力なツールであり、人間の能力を超えるパフォーマンスを達成した。
マルチエージェントシステム領域におけるRLの拡張として、マルチエージェントRL(MARL)は制御ポリシーを学ぶだけでなく、環境内の他のすべてのエージェントとの相互作用についても考慮する必要がある。
シミュレーターは、RLの基本である現実的なデータを得るのに不可欠である。
論文 参考訳(メタデータ) (2024-08-19T03:31:20Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
スパイキングニューラルネットワーク(SNN)によるニューロモルフィックコンピューティングの最近の進歩は、ロボット工学の具体的インテリジェンスを可能にする可能性を実証している。
本稿では, ロボットシステムにおいて, エンボディ型ニューロモーフィックAIを実現する方法について考察する。
論文 参考訳(メタデータ) (2024-04-04T09:52:22Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Machine Learning Quantum Systems with Magnetic p-bits [0.0]
ムーアの法則の減速は、人工知能(AI)アルゴリズムの計算ワークロードが急上昇し続けるにつれ、危機に繋がった。
スケーラブルでエネルギー効率のよいハードウェアは、AIアルゴリズムやアプリケーションのユニークな要件に合わせて緊急に必要である。
pビットによる確率計算は、スケーラブルでドメイン固有でエネルギー効率の良い計算パラダイムとして登場した。
論文 参考訳(メタデータ) (2023-10-10T14:54:57Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。