AI-Driven Chatbot for Intrusion Detection in Edge Networks: Enhancing Cybersecurity with Ethical User Consent
- URL: http://arxiv.org/abs/2408.04281v1
- Date: Thu, 8 Aug 2024 07:39:23 GMT
- Title: AI-Driven Chatbot for Intrusion Detection in Edge Networks: Enhancing Cybersecurity with Ethical User Consent
- Authors: Mugheez Asif, Abdul Manan, Abdul Moiz ur Rehman, Mamoona Naveed Asghar, Muhammad Umair,
- Abstract summary: We propose an architecture that enhances security within edge networks specifically for intrusion detection.
By securing the network environment using an edge network managed by a Raspberry Pi module, we aim to safeguard sensitive data and maintain a secure workplace.
- Score: 1.3643061988716354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's contemporary digital landscape, chatbots have become indispensable tools across various sectors, streamlining customer service, providing personal assistance, automating routine tasks, and offering health advice. However, their potential remains underexplored in the realm of network security, particularly for intrusion detection. To bridge this gap, we propose an architecture chatbot specifically designed to enhance security within edge networks specifically for intrusion detection. Leveraging advanced machine learning algorithms, this chatbot will monitor network traffic to identify and mitigate potential intrusions. By securing the network environment using an edge network managed by a Raspberry Pi module and ensuring ethical user consent promoting transparency and trust, this innovative solution aims to safeguard sensitive data and maintain a secure workplace, thereby addressing the growing need for robust network security measures in the digital age.
Related papers
- Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeek is an AI-driven multi-agent software platform that identifies and exploits vulnerabilities without human intervention.
In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks.
Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
arXiv Detail & Related papers (2024-08-31T19:15:38Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
The rapid advancement of quantum computing poses a significant threat to many current security algorithms used for secure communication, digital authentication, and information encryption.
A sufficiently powerful quantum computer could potentially exploit vulnerabilities in these algorithms, rendering data in insecure transit.
This work developed a quantum assessment tool for organizations, providing tailored recommendations for transitioning their security protocols into a post-quantum world.
arXiv Detail & Related papers (2024-07-18T13:58:34Z) - A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective, Direction and Open Research Scopes [1.3631461603291568]
Generative Adversarial Networks (GANs) have emerged as powerful solutions for addressing the constantly changing security issues.
This survey studies the significance of the deep learning model, precisely on GANs, in strengthening cybersecurity defenses.
The focus is to examine how GANs can be influential tools to strengthen cybersecurity defenses in these domains.
arXiv Detail & Related papers (2024-07-11T19:51:48Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
The automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats.
The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders.
arXiv Detail & Related papers (2024-06-29T16:07:48Z) - Distributed Threat Intelligence at the Edge Devices: A Large Language Model-Driven Approach [0.0]
Decentralized threat intelligence on edge devices represents a promising paradigm for enhancing cybersecurity on resource-constrained edge devices.
This approach involves the deployment of lightweight machine learning models directly onto edge devices to analyze local data streams, such as network traffic and system logs, in real-time.
Our proposed framework can improve edge computing security by providing better security in cyber threat detection and mitigation by isolating the edge devices from the network.
arXiv Detail & Related papers (2024-05-14T16:40:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Deep Learning Algorithm for Threat Detection in Hackers Forum (Deep Web) [0.0]
We propose a novel approach for detecting cyberthreats using a deep learning algorithm Long Short-Term Memory (LSTM)
Our model can be easily deployed by organizations in securing digital communications and detection of vulnerability exposure before cyberattack.
arXiv Detail & Related papers (2022-02-03T07:49:44Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Darknet Traffic Big-Data Analysis and Network Management to Real-Time
Automating the Malicious Intent Detection Process by a Weight Agnostic Neural
Networks Framework [0.0]
We propose a novel darknet traffic analysis and network management framework to real-time automating the malicious intent detection process.
It is an effective and accurate computational intelligent tool for network traffic analysis, the demystification of malware traffic, and encrypted traffic identification in real-time.
arXiv Detail & Related papers (2021-02-16T19:03:25Z) - Certifiable Robustness to Adversarial State Uncertainty in Deep
Reinforcement Learning [40.989393438716476]
Deep Neural Network-based systems are now the state-of-the-art in many robotics tasks, but their application in safety-critical domains remains dangerous without formal guarantees on network robustness.
Small perturbations to sensor inputs are often enough to change network-based decisions, which was recently shown to cause an autonomous vehicle to swerve into another lane.
This work leverages research on certified adversarial robustness to develop an online certifiably robust for deep reinforcement learning algorithms.
arXiv Detail & Related papers (2020-04-11T21:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.