A Virtual Cybersecurity Department for Securing Digital Twins in Water Distribution Systems
- URL: http://arxiv.org/abs/2504.20266v1
- Date: Mon, 28 Apr 2025 21:14:48 GMT
- Title: A Virtual Cybersecurity Department for Securing Digital Twins in Water Distribution Systems
- Authors: Mohammadhossein Homaei, Agustin Di Bartolo, Oscar Mogollon-Gutierrez, Fernando Broncano Morgado, Pablo Garcia Rodriguez,
- Abstract summary: Digital twins (DTs) help improve real-time monitoring and decision-making in water distribution systems.<n>Their connectivity makes them easy targets for cyberattacks such as scanning, denial-of-service (DoS), and unauthorized access.<n>We present a Virtual Cybersecurity Department (VCD), an affordable and automated framework designed for SMEs.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Digital twins (DTs) help improve real-time monitoring and decision-making in water distribution systems. However, their connectivity makes them easy targets for cyberattacks such as scanning, denial-of-service (DoS), and unauthorized access. Small and medium-sized enterprises (SMEs) that manage these systems often do not have enough budget or staff to build strong cybersecurity teams. To solve this problem, we present a Virtual Cybersecurity Department (VCD), an affordable and automated framework designed for SMEs. The VCD uses open-source tools like Zabbix for real-time monitoring, Suricata for network intrusion detection, Fail2Ban to block repeated login attempts, and simple firewall settings. To improve threat detection, we also add a machine-learning-based IDS trained on the OD-IDS2022 dataset using an improved ensemble model. This model detects cyber threats such as brute-force attacks, remote code execution (RCE), and network flooding, with 92\% accuracy and fewer false alarms. Our solution gives SMEs a practical and efficient way to secure water systems using low-cost and easy-to-manage tools.
Related papers
- Breaking the Flow and the Bank: Stealthy Cyberattacks on Water Network Hydraulics [3.360922672565235]
Stealthy False Data Injection Attacks (SFDIAs) can compromise system operations while avoiding detection.<n>This paper presents a systematic analysis of sensor attacks against water distribution networks (WDNs)<n>We propose several attack formulations that range from tailored strategies satisfying both physical and detection constraints to simpler measurement manipulations.
arXiv Detail & Related papers (2025-04-24T02:54:20Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.<n>We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.<n>Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [104.94706600050557]
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community.
We propose ICER, a novel red-teaming framework that generates interpretable and semantic meaningful problematic prompts.
Our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
arXiv Detail & Related papers (2024-11-25T04:17:24Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeek is an AI-driven multi-agent software platform that identifies and exploits vulnerabilities without human intervention.
In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks.
Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
arXiv Detail & Related papers (2024-08-31T19:15:38Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - GRAVITAS: Graphical Reticulated Attack Vectors for Internet-of-Things
Aggregate Security [5.918387680589584]
Internet-of-Things (IoT) and cyber-physical systems (CPSs) may consist of thousands of devices connected in a complex network topology.
We describe a comprehensive risk management system, called GRAVITAS, for IoT/CPS that can identify undiscovered attack vectors.
arXiv Detail & Related papers (2021-05-31T19:35:23Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.