論文の概要: Learning with Digital Agents: An Analysis based on the Activity Theory
- arxiv url: http://arxiv.org/abs/2408.04304v1
- Date: Thu, 8 Aug 2024 08:38:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:08:12.661919
- Title: Learning with Digital Agents: An Analysis based on the Activity Theory
- Title(参考訳): デジタルエージェントによる学習 : 活動理論に基づく分析
- Authors: Mateusz Dolata, Dzmitry Katsiuba, Natalie Wellnhammer, Gerhard Schwabe,
- Abstract要約: 本稿では,活動理論に基づく学習活動のモデルを提案する。
本稿では,このモデルを用いて,教育におけるデジタルエージェントに関する先行研究のレビューを行い,活動の様々な特性が学習結果にどのような影響を及ぼすか分析する。
我々は、活動理論に基づくモデルを教育の文脈を超えて拡張し、デジタルエージェントを作成する際に、デザイナーや研究者が正しい質問をする方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Digital agents are considered a general-purpose technology. They spread quickly in private and organizational contexts, including education. Yet, research lacks a conceptual framing to describe interaction with such agents in a holistic manner. While focusing on the interaction with a pedagogical agent, i.e., a digital agent capable of natural-language interaction with a learner, we propose a model of learning activity based on activity theory. We use this model and a review of prior research on digital agents in education to analyze how various characteristics of the activity, including features of a pedagogical agent or learner, influence learning outcomes. The analysis leads to identification of IS research directions and guidance for developers of pedagogical agents and digital agents in general. We conclude by extending the activity theory-based model beyond the context of education and show how it helps designers and researchers ask the right questions when creating a digital agent.
- Abstract(参考訳): デジタルエージェントは汎用技術と考えられている。
教育を含む私的・組織的な文脈で急速に広まった。
しかし、研究はそのようなエージェントとの相互作用を包括的に記述する概念的なフレーミングを欠いている。
学習者との自然言語対話が可能なデジタルエージェントである教育エージェントとのインタラクションに着目しながら,活動理論に基づく学習活動のモデルを提案する。
このモデルを用いて、教育におけるデジタルエージェントに関する先行研究のレビューを行い、教育エージェントや学習者の特徴、学習結果への影響など、活動の様々な特徴について分析する。
この分析は、教育エージェントやデジタルエージェント全般の開発者のためのIS研究の方向性とガイダンスの特定につながる。
我々は、活動理論に基づくモデルを教育の文脈を超えて拡張し、デジタルエージェントを作成する際に、デザイナーや研究者が正しい質問をするのにどのように役立つかを示す。
関連論文リスト
- Computing-specific pedagogies and theoretical models: common uses and relationships [0.0]
本論文では,コンピュータ固有の教育と理論モデルとの関係について述べる。
我々のゴールは、フィールド固有の理論や教育の明示的な利用が、その分野をさらに発展させることによって、コンピューティング教育の研究と実践を豊かにすることである。
論文 参考訳(メタデータ) (2024-08-22T06:53:22Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Knowledge-enhanced Agents for Interactive Text Games [16.055119735473017]
テキストベースのゲームにおいてエージェントの機能的接地を改善するための知識注入フレームワークを提案する。
学習に基づくエージェントに注入するドメイン知識の2つの形態について考察する。
我々のフレームワークは、強化学習エージェントと言語モデルエージェントの2つの代表的なモデルクラスをサポートしている。
論文 参考訳(メタデータ) (2023-05-08T23:31:39Z) - Deep Reinforcement Learning for Multi-Agent Interaction [14.532965827043254]
自律エージェント研究グループは、自律システム制御のための新しい機械学習アルゴリズムを開発した。
本稿では,現在進行中の研究ポートフォリオの概要を概説するとともに,今後の課題について論じる。
論文 参考訳(メタデータ) (2022-08-02T21:55:56Z) - Assessing Human Interaction in Virtual Reality With Continually Learning
Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study [6.076137037890219]
本研究では,人間と学習の継続する予測エージェントの相互作用が,エージェントの能力の発達とともにどのように発達するかを検討する。
我々は、強化学習(RL)アルゴリズムから学習した予測が人間の予測を増大させる仮想現実環境と時間ベースの予測タスクを開発する。
以上の結果から,人的信頼はエージェントとの早期の相互作用に影響され,信頼が戦略的行動に影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-12-14T22:46:44Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Continual Developmental Neurosimulation Using Embodied Computational Agents [0.0]
神経系の形態形成, 発達学習, 可塑性の関連現象のブリッジングにおける発達軌跡の役割を考察することができる。
我々のアプローチは発達的実施と密に統合されており、発達的ブレイテンベルク車両(dBV)と呼ばれる種類のエージェントを用いて実装することができる。
dBVは、体、センサー、エフェクター、神経システムなど、エージェントベースのシステムへと変貌する、未定義の構造の集合として、自らの生活を始める。
論文 参考訳(メタデータ) (2021-03-07T07:22:49Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
近年のエビデンスでは、子どもの体現戦略をシミュレーションすることで、マシンインテリジェンスも改善できることが示されている。
本稿では,発達神経ロボティクスの文脈における畳み込みニューラルネットワークモデルへの具体的戦略の適用について検討する。
論文 参考訳(メタデータ) (2020-03-23T14:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。