論文の概要: LLM-based MOFs Synthesis Condition Extraction using Few-Shot Demonstrations
- arxiv url: http://arxiv.org/abs/2408.04665v2
- Date: Tue, 25 Feb 2025 15:20:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 17:42:44.247463
- Title: LLM-based MOFs Synthesis Condition Extraction using Few-Shot Demonstrations
- Title(参考訳): Few-Shot Demonstrations を用いたLLMに基づくMOFs合成条件抽出
- Authors: Lei Shi, Zhimeng Liu, Yi Yang, Weize Wu, Yuyang Zhang, Hongbo Zhang, Jing Lin, Siyu Wu, Zihan Chen, Ruiming Li, Nan Wang, Zipeng Liu, Huobin Tan, Hongyi Gao, Yue Zhang, Ge Wang,
- Abstract要約: 大規模言語モデル(LLM)は、この長年の問題に対する破壊的な新しい解決策を提供する。
本稿では,LLMの文脈内学習パラダイムについて紹介する。
提案した少数ショットLLMの合成,構造推定,材料設計性能は,いずれもゼロショットLLMとベースライン法を大きく上回っている。
- 参考スコア(独自算出の注目度): 31.35595673239483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extraction of Metal-Organic Frameworks (MOFs) synthesis route from literature has been crucial for the logical MOFs design with desirable functionality. The recent advent of large language models (LLMs) provides disruptively new solution to this long-standing problem. While the latest researches mostly stick to primitive zero-shot LLMs lacking specialized material knowledge, we introduce in this work the few-shot LLM in-context learning paradigm. First, a human-AI interactive data curation approach is proposed to secure high-quality demonstrations. Second, an information retrieval algorithm is applied to pick and quantify few-shot demonstrations for each extraction. Over three datasets randomly sampled from nearly 90,000 well-defined MOFs, we conduct triple evaluations to validate our method. The synthesis extraction, structure inference, and material design performance of the proposed few-shot LLMs all significantly outplay zero-shot LLM and baseline methods. The lab-synthesized material guided by LLM surpasses 91.1% high-quality MOFs of the same class reported in the literature, on the key physical property of specific surface area.
- Abstract(参考訳): 文献からの金属-有機フレームワーク(MOF)合成経路の抽出は、望まれる機能を持つ論理MOFの設計に不可欠である。
最近の大規模言語モデル(LLM)の出現は、この長年の問題に対する破壊的な新しい解決策を提供する。
最新の研究はほとんどが、特殊な素材知識を欠いた原始ゼロショットLLMに留まっているが、本研究では、少数ショットLLMインコンテキスト学習パラダイムを紹介する。
まず,人間とAIの対話型データキュレーション手法を提案する。
次に、情報検索アルゴリズムを適用して、抽出毎に数発のデモを選択して定量化する。
9万近いよく定義されたMOFからランダムに3つ以上のデータセットをサンプリングし、その方法を検証するために3つの評価を行った。
提案した少数ショットLLMの合成,構造推定,材料設計性能は,いずれもゼロショットLLMとベースライン法を大きく上回っている。
LLMによって導かれる実験室合成材料は、特定の表面積の重要な物理的性質に基づいて、文献で報告された同クラスの高品質MOFを91.1%超えた。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
本稿では,大規模言語モデルの推論性能に及ぼす文脈内実演の影響を理論的に解析することを目的とする。
本稿では, LMS3 という, 単純で一般化可能な, 低複雑さな実演選択法を提案する。
論文 参考訳(メタデータ) (2024-12-11T11:38:11Z) - A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis [26.505386645322506]
大規模言語モデル(LLM)は自然言語処理の分野で注目を集めている。
本稿では,ABSA分野におけるLLMの包括的評価に光を当て,13のデータセット,8のABSAサブタスク,6のLLMを含む。
実験により,LLMは微調整型小言語モデル (SLM) と比較して,微調整型に依存したパラダイムで,新しい最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2024-12-03T08:54:17Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
本稿では,大規模言語モデルに組み込まれたRE知識を十分に活用する新しい手法であるSelf-Promptingフレームワークを紹介する。
我々のフレームワークは3段階の多様性アプローチを用いてLSMを誘導し、スクラッチから特定の関係をカプセル化する複数の合成サンプルを生成する。
ベンチマークデータセットを用いた実験により,既存のLCMベースのゼロショットRE法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-02T01:12:54Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
本稿では,損失関数の勾配解析の特異な角度について述べる。
ExMATEはMLEの優れたサロゲートであり,DPOとMLEの代わりにExMATEを組み合わせることで,統計的(5-7%)と生成的(+18%)の性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-29T17:46:18Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation [9.409062607311528]
大規模言語モデル(LLM)は、人間の命令を理解し、コードを生成するのに優れた性能を示した。
我々は,ITERTLという,シンプルながら効果的な反復訓練パラダイムを導入する。
提案手法によってトレーニングされたモデルは、最先端のオープンソースモデル(SOTA)と競合し、さらに優れていることを示す。
論文 参考訳(メタデータ) (2024-06-28T01:44:57Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
大言語モデル(LLM)は、与えられた記事に対する抽象的な要約のゼロショット生成において最先端のパフォーマンスを達成した。
本稿では,LLMのロバスト性を測定するためのシンプルな戦略であるrelevance paraphrasingを提案する。
論文 参考訳(メタデータ) (2024-06-06T12:08:43Z) - LLMEmbed: Rethinking Lightweight LLM's Genuine Function in Text Classification [13.319594321038926]
本稿では,この古典的だが挑戦的な課題に対処するために,LLMEmbedという,シンプルで効果的なトランスファー学習戦略を提案する。
その結果,LLMEmbedはトレーニングのオーバーヘッドを低く抑えながら,高い性能を発揮することがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:46:59Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Large Language Models aren't all that you need [0.0]
本稿では,SemEval 2023 Task 2: MultiCoNER IIを解くために構築されたアーキテクチャとシステムについて述べる。
a)従来のランダムフィールドモデルと(b)カスタマイズされた頭で微調整されたLarge Language Model(LLM)の2つのアプローチを評価し、その2つのアプローチを比較した。
論文 参考訳(メタデータ) (2024-01-01T08:32:50Z) - Low-resource classification of mobility functioning information in
clinical sentences using large language models [0.0]
本研究は,臨床ノートから機能的情報の存在を正確に識別する,公開可能な大規模言語モデル(LLM)の能力を評価するものである。
我々は,n2c2臨床ノートから算出したモビリティNERデータセットから,1000文のバランスの取れたバイナリ分類データセットを収集した。
論文 参考訳(メタデータ) (2023-12-15T20:59:17Z) - Are You Sure? Challenging LLMs Leads to Performance Drops in The
FlipFlop Experiment [82.60594940370919]
大規模言語モデル(LLM)のマルチターン動作を研究するためのFlipFlop実験を提案する。
モデルが平均46%の時間で回答を反転させ、全てのモデルが最初の予測と最終予測の間に精度を低下させ、平均17%の低下(FlipFlop効果)を示す。
我々はオープンソースのLLMで微調整実験を行い、合成されたデータに対する微調整は、性能劣化を60%低減させることができるが、サイコファンティックな振る舞いを完全には解決できないことを発見した。
論文 参考訳(メタデータ) (2023-11-14T23:40:22Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。