論文の概要: Towards improving Alzheimer's intervention: a machine learning approach for biomarker detection through combining MEG and MRI pipelines
- arxiv url: http://arxiv.org/abs/2408.04815v1
- Date: Fri, 9 Aug 2024 02:15:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:58:32.954561
- Title: Towards improving Alzheimer's intervention: a machine learning approach for biomarker detection through combining MEG and MRI pipelines
- Title(参考訳): アルツハイマーの介入改善に向けて-MEGとMRIパイプラインを組み合わせたバイオマーカー検出のための機械学習アプローチ
- Authors: Alwani Liyana Ahmad, Jose Sanchez-Bornot, Roberto C. Sotero, Damien Coyle, Zamzuri Idris, Ibrahima Faye,
- Abstract要約: 本研究は、健常者と軽度認知障害者を区別するために、MEG特徴を用いた分類手法を評価する。
我々は、324人のBioFIND参加者のTesla MRIソースMEGデータ(158と166 HC)を使用した。
LCMVベースのMEGを用いたGLMNETでは、MRIとMEGの特徴を組み合わせることで、0.76の精度と0.82のAUCが達成された。
- 参考スコア(独自算出の注目度): 2.9027661868249255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: MEG are non invasive neuroimaging techniques with excellent temporal and spatial resolution, crucial for studying brain function in dementia and Alzheimer Disease. They identify changes in brain activity at various Alzheimer stages, including preclinical and prodromal phases. MEG may detect pathological changes before clinical symptoms, offering potential biomarkers for intervention. This study evaluates classification techniques using MEG features to distinguish between healthy controls and mild cognitive impairment participants from the BioFIND study. We compare MEG based biomarkers with MRI based anatomical features, both independently and combined. We used 3 Tesla MRI and MEG data from 324 BioFIND participants;158 MCI and 166 HC. Analyses were performed using MATLAB with SPM12 and OSL toolboxes. Machine learning analyses, including 100 Monte Carlo replications of 10 fold cross validation, were conducted on sensor and source spaces. Combining MRI with MEG features achieved the best performance; 0.76 accuracy and AUC of 0.82 for GLMNET using LCMV source based MEG. MEG only analyses using LCMV and eLORETA also performed well, suggesting that combining uncorrected MEG with z-score-corrected MRI features is optimal.
- Abstract(参考訳): MEGは、時間分解能と空間分解能に優れた非侵襲的な神経イメージング技術であり、認知症やアルツハイマー病の脳機能研究に不可欠である。
彼らは、前頭葉期と前頭葉期を含む様々なアルツハイマー期における脳活動の変化を同定する。
MEGは臨床症状の前に病理学的変化を検出し、介入のためのバイオマーカーを提供する。
本研究は,BioFIND研究から健常者および軽度認知障害患者を識別するためのMEG特徴を用いた分類手法について検討した。
我々はMEGベースのバイオマーカーとMRIベースの解剖学的特徴を比較した。
324名のBioFIND参加者(MCI158名,HC166名)のTesla MRIおよびMEGデータを使用した。
分析はMATLABとSPM12、OSLツールボックスを用いて行われた。
10倍のクロスバリデーションを持つ100個のモンテカルロレプリケーションを含む機械学習解析を,センサおよびソース空間で行った。
LCMVをベースとしたMEGを用いたGLMNETでは、MRIとMEGの機能を組み合わせることで、0.76の精度とAUCが0.82である。
LCMV と eLORETA を用いた MEG 解析も良好に行われ、非補正 MEG と z-スコア補正 MRI の併用が最適であることが示唆された。
関連論文リスト
- MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment [2.9027661868249255]
アルツハイマー病は重要な課題であり、効果的な介入のために早期発見が必要である。
本研究では、MRIに基づくバイオマーカーの選択と分類のための機械学習手法を解析し、5年以内に健康的なコントロールと軽度の認知障害を区別する。
論文 参考訳(メタデータ) (2024-05-29T06:12:05Z) - Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward
precision medicine using MRI and a data-inclusive machine learning algorithm [3.2507684591996036]
Glioblastoma (GBM) は最も攻撃的で致命的なヒト癌の一つである。
バイオプシーは侵襲的であり、非侵襲的なMRIベースの機械学習(ML)モデルの開発を動機付けている。
我々は,MRIを用いて各GBM腫瘍の局所的遺伝的変化を予測するための新しいWeakly Supervised Ordinal Support Vector Machine (WSO-SVM)を提案する。
論文 参考訳(メタデータ) (2023-12-30T03:28:51Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
経頭蓋磁気刺激(TMS)と脳波記録(TMS-EEG)を組み合わせることで、脳、特にアルツハイマー病(AD)の研究に大きな可能性を示す。
本研究では,脳機能の変化を反映した電位指標として,脳波信号のTMS誘発摂動の持続時間を自動的に決定する手法を提案する。
論文 参考訳(メタデータ) (2022-04-29T19:27:06Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - A transformer-based deep learning approach for classifying brain
metastases into primary organ sites using clinical whole brain MRI images [4.263008461907835]
脳転移性疾患の治療決定は、一次臓器部位癌組織学の知識によって引き起こされる。
臨床全体脳データとエンドツーエンドパイプラインの使用は、外部からの人間の介入を妨げる。
悪性腫瘍の一次臓器部位の正確な診断を可能にするために、脳全体の画像特徴が十分に識別可能であることは確実である。
論文 参考訳(メタデータ) (2021-10-07T16:10:44Z) - Machine Learning and Glioblastoma: Treatment Response Monitoring
Biomarkers in 2021 [0.3266995794795542]
組織的検討の目的は,成人のグリオブラスト腫治療反応モニタリングバイオマーカーの診断検査精度に関する最近の研究を評価することである。
MRI機能を使用して進行と模倣を区別する機械学習モデルの良好な診断性能がある可能性が高い。
暗黙的特徴を用いたMLの診断性能は明示的特徴を用いたMLよりも優れていなかった。
論文 参考訳(メタデータ) (2021-04-15T10:49:34Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。