Exploiting the Lock: Leveraging MiG-V's Logic Locking for Secret-Data Extraction
- URL: http://arxiv.org/abs/2408.04976v1
- Date: Fri, 9 Aug 2024 09:59:23 GMT
- Title: Exploiting the Lock: Leveraging MiG-V's Logic Locking for Secret-Data Extraction
- Authors: Lennart M. Reimann, Yadu Madhukumar Variyar, Lennet Huelser, Chiara Ghinami, Dominik Germek, Rainer Leupers,
- Abstract summary: MiG-V is the first commercially available logic-locked RISC-V processor.
We show that changing a single bit of the logic locking key can expose 100% of the cryptographic encryption key.
- Score: 0.16492989697868893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The MiG-V was designed for high-security applications and is the first commercially available logic-locked RISC-V processor on the market. In this context logic locking was used to protect the RISC-V processor design during the untrusted manufacturing process by using key-driven logic gates to obfuscate the original design. Although this method defends against malicious modifications, such as hardware Trojans, logic locking's impact on the RISC-V processor's data confidentiality during runtime has not been thoroughly examined. In this study, we evaluate the impact of logic locking on data confidentiality. By altering the logic locking key of the MiG-V while running SSL cryptographic algorithms, we identify data leakages resulting from the exploitation of the logic locking hardware. We show that changing a single bit of the logic locking key can expose 100% of the cryptographic encryption key. This research reveals a critical security flaw in logic locking, highlighting the need for comprehensive security assessments beyond logic locking key-recovery attacks.
Related papers
- SubLock: Sub-Circuit Replacement based Input Dependent Key-based Logic Locking for Robust IP Protection [1.804933160047171]
Existing logic locking techniques are vulnerable to SAT-based attacks.
Several SAT-resistant logic locking methods are reported; they require significant overhead.
This paper proposes a novel input dependent key-based logic locking (IDKLL) that effectively prevents SAT-based attacks with low overhead.
arXiv Detail & Related papers (2024-06-27T11:17:06Z) - CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
We propose CodeChameleon, a novel jailbreak framework based on personalized encryption tactics.
We conduct extensive experiments on 7 Large Language Models, achieving state-of-the-art average Attack Success Rate (ASR)
Remarkably, our method achieves an 86.6% ASR on GPT-4-1106.
arXiv Detail & Related papers (2024-02-26T16:35:59Z) - LIPSTICK: Corruptibility-Aware and Explainable Graph Neural Network-based Oracle-Less Attack on Logic Locking [1.104960878651584]
We develop, train, and test a corruptibility-aware graph neural network-based oracle-less attack on logic locking.
Our model is explainable in the sense that we analyze what the machine learning model has interpreted in the training process and how it can perform a successful attack.
arXiv Detail & Related papers (2024-02-06T18:42:51Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning
Accelerators [4.605674633999923]
We show how logic locking can be used to compromise the security of a neural accelerator it protects.
Specifically, we show how the deterministic errors caused by incorrect keys can be harnessed to produce neural-trojan-style backdoors.
arXiv Detail & Related papers (2023-04-12T17:55:34Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Deceptive Logic Locking for Hardware Integrity Protection against
Machine Learning Attacks [0.6868387710209244]
We present a theoretical model to test locking schemes for key-related structural leakage that can be exploited by machine learning.
We introduce D-MUX: a deceptive multiplexer-based logic-locking scheme that is resilient against structure-exploiting machine learning attacks.
To the best of our knowledge, D-MUX is the first machine-learning-resilient locking scheme capable of protecting against all known learning-based attacks.
arXiv Detail & Related papers (2021-07-19T09:08:14Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Attack of the Genes: Finding Keys and Parameters of Locked Analog ICs
Using Genetic Algorithm [3.0396374367054784]
We use algorithms based on evolutionary strategies to investigate the security of analog obfuscation/locking techniques.
We present a genetic algorithm (GA) approach which is capable of completely breaking a locked analog circuit.
We implement both a more naive satisfiability modulo theory (SMT)-based attack on common analog benchmark circuits obfuscated by combinational locking and parameter biasing.
arXiv Detail & Related papers (2020-03-31T01:38:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.