論文の概要: A GNN Model with Adaptive Weights for Session-Based Recommendation Systems
- arxiv url: http://arxiv.org/abs/2408.05051v1
- Date: Fri, 9 Aug 2024 13:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:47:15.127054
- Title: A GNN Model with Adaptive Weights for Session-Based Recommendation Systems
- Title(参考訳): セッションベース推薦システムにおける適応重み付きGNNモデル
- Authors: Begüm Özbay, Dr. Resul Tugay, Prof. Dr. Şule Gündüz Öğüdücü,
- Abstract要約: セッションベースレコメンデーション(SBR)で使用できる新しいアプローチを提案する。
本稿では,グラフニューラルネットワーク(GNN)ベクトルに適用した適応重み付け機構を提案する。
アイテムは、重み付けメカニズムの結果、各セッション内で様々な重要性の度合いが割り当てられます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Session-based recommendation systems aim to model users' interests based on their sequential interactions to predict the next item in an ongoing session. In this work, we present a novel approach that can be used in session-based recommendations (SBRs). Our goal is to enhance the prediction accuracy of an existing session-based recommendation model, the SR-GNN model, by introducing an adaptive weighting mechanism applied to the graph neural network (GNN) vectors. This mechanism is designed to incorporate various types of side information obtained through different methods during the study. Items are assigned varying degrees of importance within each session as a result of the weighting mechanism. We hypothesize that this adaptive weighting strategy will contribute to more accurate predictions and thus improve the overall performance of SBRs in different scenarios. The adaptive weighting strategy can be utilized to address the cold start problem in SBRs by dynamically adjusting the importance of items in each session, thus providing better recommendations in cold start situations, such as for new users or newly added items. Our experimental evaluations on the Dressipi dataset demonstrate the effectiveness of the proposed approach compared to traditional models in enhancing the user experience and highlighting its potential to optimize the recommendation results in real-world applications.
- Abstract(参考訳): セッションベースレコメンデーションシステムは,セッション中の次の項目を予測するために,逐次的なインタラクションに基づいてユーザの興味をモデル化することを目的としている。
本稿では,セッションベースレコメンデーション(SBR)に利用できる新しいアプローチを提案する。
我々の目標は、グラフニューラルネットワーク(GNN)ベクトルに適用された適応重み付け機構を導入することにより、既存のセッションベースレコメンデーションモデルであるSR-GNNモデルの予測精度を向上させることである。
このメカニズムは、研究中に様々な方法で得られた様々な側面情報を組み込むように設計されている。
アイテムは、重み付けメカニズムの結果、各セッション内で様々な重要性の度合いが割り当てられます。
我々は、この適応重み付け戦略がより正確な予測に寄与し、異なるシナリオにおけるSBRの全体的な性能を向上させると仮定する。
適応重み付け戦略は、各セッションにおけるアイテムの重要性を動的に調整することにより、SBRにおけるコールドスタート問題に対処するために利用することができ、新規ユーザや新たに追加されたアイテムなどのコールドスタート状況においてより優れたレコメンデーションを提供する。
Dressipiデータセットに対する実験的な評価は、ユーザエクスペリエンスの向上と、実際のアプリケーションにおける推奨結果の最適化の可能性を強調した従来のモデルと比較して、提案手法の有効性を示すものである。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Performance Comparison of Session-based Recommendation Algorithms based on GNNs [6.617487928813376]
セッションベースのレコメンデーション設定では、リコメンダシステムは長期的なユーザプロファイルにアクセスできない。
本稿では,GNNをベースとした8つの手法の評価結果について報告する。
論文 参考訳(メタデータ) (2023-12-27T19:24:26Z) - Exploring Popularity Bias in Session-based Recommendation [0.6798775532273751]
セッションベースの設定と適応確率計算に分析を拡張し、セッションベースのレコメンデーションタスクの独特な特性に適応する。
本研究では、異なるデータセット上での確率分布と異なる階層化手法について検討し、確率関連特性が実際にデータセット固有のものであることを見出した。
論文 参考訳(メタデータ) (2023-12-13T02:48:35Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - Hybrid Model with Time Modeling for Sequential Recommender Systems [0.15229257192293202]
Booking.comはWSDM WebTour 2021 Challengeを組織した。
レコメンダシステムのための最先端のディープラーニングアーキテクチャをテストするために,いくつかの実験を行った。
実験結果から,narmの改善は他のベンチマーク手法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-07T19:28:22Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
セッションベースレコメンデーションのための新しいターゲット注意グラフニューラルネットワーク(TAGNN)モデルを提案する。
TAGNNでは、ターゲット・アウェア・アテンションは、様々なターゲット項目に関して異なるユーザ関心を適応的に活性化する。
学習した関心表現ベクトルは、異なる対象項目によって変化し、モデルの表現性を大幅に改善する。
論文 参考訳(メタデータ) (2020-05-06T14:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。