論文の概要: Evaluating the capability of large language models to personalize science texts for diverse middle-school-age learners
- arxiv url: http://arxiv.org/abs/2408.05204v1
- Date: Fri, 9 Aug 2024 17:53:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:05:23.672174
- Title: Evaluating the capability of large language models to personalize science texts for diverse middle-school-age learners
- Title(参考訳): 多様な中学生を対象とした理科教科書のパーソナライズのための大規模言語モデルの能力評価
- Authors: Michael Vaccaro Jr, Mikayla Friday, Arash Zaghi,
- Abstract要約: GPT-4は、トレーニングセッション中に選択した選択に基づいて、学生の学習嗜好をプロファイルするために使用された。
実験グループでは,GPT-4を用いて,学生の予測プロファイルに適合する科学テキストの書き直しを行い,制御グループでは,学習嗜好に反する文章の書き直しを行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), including OpenAI's GPT-series, have made significant advancements in recent years. Known for their expertise across diverse subject areas and quick adaptability to user-provided prompts, LLMs hold unique potential as Personalized Learning (PL) tools. Despite this potential, their application in K-12 education remains largely unexplored. This paper presents one of the first randomized controlled trials (n = 23) to evaluate the effectiveness of GPT-4 in personalizing educational science texts for middle school students. In this study, GPT-4 was used to profile student learning preferences based on choices made during a training session. For the experimental group, GPT-4 was used to rewrite science texts to align with the student's predicted profile while, for students in the control group, texts were rewritten to contradict their learning preferences. The results of a Mann-Whitney U test showed that students significantly preferred (at the .10 level) the rewritten texts when they were aligned with their profile (p = .059). These findings suggest that GPT-4 can effectively interpret and tailor educational content to diverse learner preferences, marking a significant advancement in PL technology. The limitations of this study and ethical considerations for using artificial intelligence in education are also discussed.
- Abstract(参考訳): OpenAIのGPTシリーズを含む大規模言語モデル(LLM)は、近年大きく進歩している。
多様な分野にわたる専門知識とユーザが提供するプロンプトへの迅速な適応性で知られ、LLMはパーソナライズドラーニング(PL)ツールとしてユニークなポテンシャルを持っている。
この可能性にもかかわらず、K-12教育への応用はほとんど未調査のままである。
本稿では,中学生を対象とした教育科学テキストのパーソナライズにおける GPT-4 の有効性を評価するために,初めてランダム化制御試験 (n = 23) を行った。
本研究は, GPT-4を用いて, 授業中に選択した選択に基づいて, 学生の学習嗜好をプロファイルした。
実験グループでは,GPT-4を用いて,学生の予測プロファイルに適合する科学テキストの書き直しを行い,制御グループでは,学習嗜好に反する文章の書き直しを行った。
Mann-Whitney U テストの結果、学生はプロフィールと整列する(p = .059)ときに書き直されたテキストをかなり好んだ(.10レベル)。
これらの結果から, GPT-4は多様な学習者の嗜好を効果的に解釈・調整し, PL技術の進歩を示すことが示唆された。
本研究の限界と教育における人工知能の利用に関する倫理的考察についても論じる。
関連論文リスト
- Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams [48.99818550820575]
我々は、最先端のマルチモーダルAIモデル、特にGPT-4oを利用して、大学レベルの数学試験に対する手書きの応答を自動的に評価する。
確率論試験における質問に対する実際の学生の反応を用いて, GPT-4oのスコアと, 様々なプロンプト技術を用いて, 人間の学級のスコアとの整合性を評価する。
論文 参考訳(メタデータ) (2024-11-07T22:51:47Z) - Educational Personalized Learning Path Planning with Large Language Models [0.0]
本稿では,これらの課題に対処するために,大規模言語モデル(LLM)と迅速なエンジニアリングを統合する新しいアプローチを提案する。
学習者固有の情報を組み込んだプロンプトを設計することにより,LLama-2-70B や GPT-4 などの LLM をガイドし,パーソナライズ,一貫性,教育的な学習経路を生成する。
論文 参考訳(メタデータ) (2024-07-16T14:32:56Z) - Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions [2.0411082897313984]
本研究では, LLM, 特に GPT-3.5 と GPT-4 が, グレード9の算数に適した質問をいかに展開できるかを検討する。
反復的手法を用いることで、これらのモデルは、シミュレーションされた「学生」モデルからのフィードバックに応じて、難易度と内容に基づいて質問を調整する。
論文 参考訳(メタデータ) (2024-06-20T00:25:43Z) - Can Large Language Models Make the Grade? An Empirical Study Evaluating LLMs Ability to Mark Short Answer Questions in K-12 Education [0.0]
本稿では, 大規模言語モデルを用いて, 短時間の回答に対するオープンテキスト応答の精度を評価できるような, 新たなデータセットによる一連の実験について報告する。
GPT-4は, 基本的数発のプロンプト(Kappa, 0.70)が良好に動作し, 人体レベルのパフォーマンス(0.75)に非常に近いことが判明した。
この研究は、GPT-4が、専門家のラッカーと非常に近いパフォーマンスレベルで、短い回答読解質問を確実にスコアできるという以前の知見に基づいている。
論文 参考訳(メタデータ) (2024-05-05T16:11:06Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Predicting Learning Performance with Large Language Models: A Study in Adult Literacy [18.48602704139462]
本研究では,大規模な言語モデル(LLM)を含む高度なAIモデルを用いて,ITSにおける成人リテラシープログラムにおける学習性能の予測を行う。
5倍のクロスバリデーション手法による学習性能の予測において,従来の機械学習手法と比較してGPT-4の予測能力を評価する。
論文 参考訳(メタデータ) (2024-03-04T08:14:07Z) - GPT4Vis: What Can GPT-4 Do for Zero-shot Visual Recognition? [82.40761196684524]
本稿では,ゼロショット視覚認識タスクにおけるGPT-4の言語的・視覚的能力の評価に焦点を当てる。
我々は、画像、ビデオ、点群にわたるGPT-4の性能を評価するための広範な実験を行った。
言語記述が充実したGPT-4はゼロショット認識を著しく改善した。
論文 参考訳(メタデータ) (2023-11-27T11:29:10Z) - Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts [21.150221839202878]
大規模言語モデル(LLM)は、様々な一般的なタスクで大きな成功を収めた。
本研究では,コンピュータ科学におけるNLPのニッチ分野に特有な簡潔な調査項目を生成する上で,LCMsの有効性について検討する。
人間の評価スコアとGPTによる評価スコアを比較し,詳細な分析を行った。
論文 参考訳(メタデータ) (2023-08-21T01:32:45Z) - Is GPT-4 a Good Data Analyst? [67.35956981748699]
我々は、GPT-4を、広範囲のドメインのデータベースでエンドツーエンドのデータ分析を行うためのデータ分析であると考えている。
我々は,複数の専門家データアナリストとGPT-4のパフォーマンスを体系的に比較するために,タスク固有の評価指標を設計する。
実験の結果, GPT-4はヒトに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-05-24T11:26:59Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
OpenAIが開発したGPT-4は、前例のない規模の計算とデータを使って訓練された。
我々は, GPT-4が数学, コーディング, ビジョン, 医学, 法学, 心理学などにまたがる, 新規で困難な課題を解くことを実証した。
我々は、GPT-4を人工知能(AGI)システムの早期(まだ未完成)版と見なすことができると信じている。
論文 参考訳(メタデータ) (2023-03-22T16:51:28Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4は大規模なマルチモーダルモデルであり、画像やテキストの入力を受け取り、テキスト出力を生成することができる。
試験受験者の上位10%のスコアで模擬試験に合格するなど、さまざまな専門的、学術的なベンチマークで人間レベルのパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-03-15T17:15:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。