論文の概要: Biomimetic Machine Learning approach for prediction of mechanical properties of Additive Friction Stir Deposited Aluminum alloys based walled structures
- arxiv url: http://arxiv.org/abs/2408.05237v1
- Date: Mon, 5 Aug 2024 13:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:07:11.662909
- Title: Biomimetic Machine Learning approach for prediction of mechanical properties of Additive Friction Stir Deposited Aluminum alloys based walled structures
- Title(参考訳): バイオミメティック機械学習による添加摩擦スチール蒸着アルミニウム合金壁構造の機械的性質の予測
- Authors: Akshansh Mishra,
- Abstract要約: 本研究は, バイオミメティック・機械学習を用いてAFSD(Additive Friction Stir deposited)アルミニウム合金壁構造の機械的特性を予測する新しい手法を提案する。
この研究は、AFSDプロセスの数値モデリングと遺伝的アルゴリズム最適化機械学習モデルを組み合わせて、von Misesストレスと対数ひずみを予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a novel approach to predicting mechanical properties of Additive Friction Stir Deposited (AFSD) aluminum alloy walled structures using biomimetic machine learning. The research combines numerical modeling of the AFSD process with genetic algorithm-optimized machine learning models to predict von Mises stress and logarithmic strain. Finite element analysis was employed to simulate the AFSD process for five aluminum alloys: AA2024, AA5083, AA5086, AA7075, and AA6061, capturing complex thermal and mechanical interactions. A dataset of 200 samples was generated from these simulations. Subsequently, Decision Tree (DT) and Random Forest (RF) regression models, optimized using genetic algorithms, were developed to predict key mechanical properties. The GA-RF model demonstrated superior performance in predicting both von Mises stress (R square = 0.9676) and logarithmic strain (R square = 0.7201). This innovative approach provides a powerful tool for understanding and optimizing the AFSD process across multiple aluminum alloys, offering insights into material behavior under various process parameters.
- Abstract(参考訳): 本研究は, バイオミメティック・機械学習を用いてAFSD(Additive Friction Stir deposited)アルミニウム合金壁構造の機械的特性を予測する新しい手法を提案する。
この研究は、AFSDプロセスの数値モデリングと遺伝的アルゴリズム最適化機械学習モデルを組み合わせて、von Misesストレスと対数ひずみを予測する。
AA2024, AA5083, AA5086, AA7075, AA6061の5つのアルミニウム合金のAFSD過程をシミュレーションするために有限要素解析を行った。
これらのシミュレーションから200のサンプルのデータセットが生成された。
その後、遺伝的アルゴリズムを用いて最適化された決定木(DT)とランダムフォレスト(RF)回帰モデルを開発し、重要な力学特性を予測した。
GA-RFモデルはフォン・ミセス応力(R乗=0.9676)と対数ひずみ(R乗=0.7201)の両方を予測する上で優れた性能を示した。
この革新的なアプローチは、複数のアルミニウム合金にわたるAFSDプロセスを理解し最適化するための強力なツールを提供し、様々なプロセスパラメータの下での材料挙動に関する洞察を提供する。
関連論文リスト
- AFSD-Physics: Exploring the governing equations of temperature evolution
during additive friction stir deposition by a human-AI teaming approach [0.0]
AFSDは、溶かさずに材料を堆積する新しい固体添加物製造技術である。
第一原理に基づくモデルとAIを組み合わせるために、人間とAIのチーム化アプローチが提案されている。
AFSD-Physicsと呼ばれる結果の人間情報機械学習は、ツールの温度変化の制御方程式を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-01-29T19:17:42Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
プロセスパラメータ, サーマルプロファイル, AFSD の相関関係はよく分かっていない。
この研究は、教師付き機械学習(ニューラルネットワーク)と物理情報ネットワーク(PINN)を組み合わせて、プロセスパラメータからAFSDのピーク温度分布を予測する。
論文 参考訳(メタデータ) (2023-09-13T09:39:42Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Machine Learning Algorithms for Prediction of Penetration Depth and
Geometrical Analysis of Weld in Friction Stir Spot Welding Process [0.0]
この研究は、Supervised Machine Learningアルゴリズムを用いた浸透深度予測に基づいている。
AA1230アルミニウム合金の2要素を接合するためにFSSWを用いた。
ロバスト回帰機械学習アルゴリズムは0.96の判定係数によって残りのアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-01-21T17:16:25Z) - Numerical simulation, clustering and prediction of multi-component
polymer precipitation [0.7349727826230861]
多成分ポリマー系は、有機太陽電池およびドラッグデリバリー用途に関心がある。
我々は、ポリマーの沈殿をシミュレートするために、改良されたカーン・ヒリアードモデルを用いる。
計算コストを削減するため、シミュレーションしたポリマーブレンド画像のクラスタリングとそれに伴う予測に機械学習技術を適用した。
論文 参考訳(メタデータ) (2020-07-10T09:10:17Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。