論文の概要: AFSD-Physics: Exploring the governing equations of temperature evolution
during additive friction stir deposition by a human-AI teaming approach
- arxiv url: http://arxiv.org/abs/2401.16501v1
- Date: Mon, 29 Jan 2024 19:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 17:15:28.919813
- Title: AFSD-Physics: Exploring the governing equations of temperature evolution
during additive friction stir deposition by a human-AI teaming approach
- Title(参考訳): AFSD-Physics:Human-AI Teaming 法による加法的摩擦刺激沈着過程における温度変化の制御方程式の探索
- Authors: Tony Shi, Mason Ma, Jiajie Wu, Chase Post, Elijah Charles, Tony
Schmitz
- Abstract要約: AFSDは、溶かさずに材料を堆積する新しい固体添加物製造技術である。
第一原理に基づくモデルとAIを組み合わせるために、人間とAIのチーム化アプローチが提案されている。
AFSD-Physicsと呼ばれる結果の人間情報機械学習は、ツールの温度変化の制御方程式を効果的に学習することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a modeling effort to explore the underlying physics of
temperature evolution during additive friction stir deposition (AFSD) by a
human-AI teaming approach. AFSD is an emerging solid-state additive
manufacturing technology that deposits materials without melting. However, both
process modeling and modeling of the AFSD tool are at an early stage. In this
paper, a human-AI teaming approach is proposed to combine models based on first
principles with AI. The resulting human-informed machine learning method,
denoted as AFSD-Physics, can effectively learn the governing equations of
temperature evolution at the tool and the build from in-process measurements.
Experiments are designed and conducted to collect in-process measurements for
the deposition of aluminum 7075 with a total of 30 layers. The acquired
governing equations are physically interpretable models with low computational
cost and high accuracy. Model predictions show good agreement with the
measurements. Experimental validation with new process parameters demonstrates
the model's generalizability and potential for use in tool temperature control
and process optimization.
- Abstract(参考訳): 本稿では,人-AIチームによるAFSD(Adjectitive friction stir deposition)中の温度変化の物理をモデル化する試みについて述べる。
AFSDは、溶かさずに材料を堆積する新しい固体添加物製造技術である。
しかし、AFSDツールのプロセスモデリングとモデリングはどちらも初期段階にある。
本稿では,第一原理に基づくモデルとAIを組み合わせた人間とAIのコラボレーション手法を提案する。
AFSD-Physicsと呼ばれる結果の人間情報機械学習は、ツールの温度変化の制御方程式を効果的に学習し、プロセス内測定から構築することができる。
アルミニウム7075の沈着のプロセス内測定を合計30層で収集するために, 実験および実験を行った。
得られた支配方程式は、計算コストが低く精度の高い物理的解釈可能なモデルである。
モデル予測は測定値と良い一致を示します。
新しいプロセスパラメータによる実験的検証は、ツール温度制御とプロセス最適化に使用するモデルの一般化可能性とポテンシャルを示す。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Biomimetic Machine Learning approach for prediction of mechanical properties of Additive Friction Stir Deposited Aluminum alloys based walled structures [0.0]
本研究は, バイオミメティック・機械学習を用いてAFSD(Additive Friction Stir deposited)アルミニウム合金壁構造の機械的特性を予測する新しい手法を提案する。
この研究は、AFSDプロセスの数値モデリングと遺伝的アルゴリズム最適化機械学習モデルを組み合わせて、von Misesストレスと対数ひずみを予測する。
論文 参考訳(メタデータ) (2024-08-05T13:27:54Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
プロセスパラメータ, サーマルプロファイル, AFSD の相関関係はよく分かっていない。
この研究は、教師付き機械学習(ニューラルネットワーク)と物理情報ネットワーク(PINN)を組み合わせて、プロセスパラメータからAFSDのピーク温度分布を予測する。
論文 参考訳(メタデータ) (2023-09-13T09:39:42Z) - Capturing Local Temperature Evolution during Additive Manufacturing
through Fourier Neural Operators [0.0]
本稿では, 加法製造過程における局所的な温度変化を捉えたデータ駆動モデルを提案する。
直接エネルギー沈着過程における不連続なガレルキン有限要素法に基づく数値シミュレーションで検証した。
その結果、このモデルはR2$で測定された高忠実度を実現し、トレーニングプロセスに含まれていない測地に対する一般化性を維持した。
論文 参考訳(メタデータ) (2023-07-04T16:17:59Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
深層学習に基づく後処理モデルにおける物理的整合性を実現することを提案する。
熱力学状態方程式を強制するためにニューラルネットワークを制約することは、物理的に一貫性のある予測をもたらす。
論文 参考訳(メタデータ) (2022-12-07T09:31:25Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
我々は,物理インフォームドニューラルネットワークを用いたAMプロセスのハイブリッドなデータ駆動熱モデリング手法を開発した。
赤外線カメラから測定された部分観測温度データと物理法則を組み合わせることで、全球温度履歴を予測する。
その結果,ハイブリッド熱モデルでは未知のパラメータを効果的に同定し,フルフィールド温度を正確に把握できることがわかった。
論文 参考訳(メタデータ) (2022-06-15T18:27:10Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。