Enabling Quick, Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
- URL: http://arxiv.org/abs/2408.05350v1
- Date: Wed, 31 Jul 2024 23:42:05 GMT
- Title: Enabling Quick, Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
- Authors: Landon Dyken, Saugat Adhikari, Pravin Poudel, Steve Petruzza, Da Yan, Will Usher, Sidharth Kumar,
- Abstract summary: FloodTrace is an application that enables effective crowdsourcing for flooded region annotation for machine learning training data.
We provide a framework for researchers to review aggregated crowdsourced annotations and correct inaccuracies using methods inspired by uncertainty visualization.
- Score: 6.55068241536296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to assess damage and properly allocate relief efforts, mapping the extent of flood events is a necessary and important aspect of disaster management. In recent years, deep learning methods have evolved as an effective tool to quickly label high-resolution imagery and provide necessary flood extent mappings. These methods, though, require large amounts of annotated training data to create models that are accurate and robust to new flooded imagery. In this work, we provide FloodTrace, an application that enables effective crowdsourcing for flooded region annotation for machine learning training data, removing the requirement for annotation to be done solely by researchers. We accomplish this through two orthogonal methods within our application, informed by requirements from domain experts. First, we utilize elevation-guided annotation tools and 3D rendering to inform user annotation decisions with digital elevation model data, improving annotation accuracy. For this purpose, we provide a unique annotation method that uses topological data analysis to outperform the state-of-the-art elevation-guided annotation tool in efficiency. Second, we provide a framework for researchers to review aggregated crowdsourced annotations and correct inaccuracies using methods inspired by uncertainty visualization. We conducted a user study to confirm the application effectiveness in which 266 graduate students annotated high-resolution aerial imagery from Hurricane Matthew in North Carolina. Experimental results show the accuracy and efficiency benefits of our application apply even for untrained users. In addition, using our aggregation and correction framework, flood detection models trained on crowdsourced annotations were able to achieve performance equal to models trained on expert-labeled annotations, while requiring a fraction of the time on the part of the researcher.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Improving Malware Detection with Adversarial Domain Adaptation and Control Flow Graphs [10.352741619176383]
Existing solutions to combat concept drift use active learning.
We propose a method that learns retained information in malware control flow graphs post-drift by leveraging graph neural network.
Our approach demonstrates a significant enhancement in predicting unseen malware family in a binary classification task and predicting drifted malware families in a multi-class setting.
arXiv Detail & Related papers (2024-07-18T22:06:20Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
Building footprint maps offer promise of precise footprint extraction without extensive post-processing.
Deep learning methods face challenges in generalization and label efficiency.
We propose terrain-aware self-supervised learning tailored to remote sensing.
arXiv Detail & Related papers (2023-11-02T12:34:23Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
We reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English datasets.
We define a uniform evaluation setup including a new formalization of the annotation error detection task.
We release our datasets and implementations in an easy-to-use and open source software package.
arXiv Detail & Related papers (2022-06-05T22:31:45Z) - Dynamic Supervisor for Cross-dataset Object Detection [52.95818230087297]
Cross-dataset training in object detection tasks is complicated because the inconsistency in the category range across datasets transforms fully supervised learning into semi-supervised learning.
We propose a dynamic supervisor framework that updates the annotations multiple times through multiple-updated submodels trained using hard and soft labels.
In the final generated annotations, both recall and precision improve significantly through the integration of hard-label training with soft-label training.
arXiv Detail & Related papers (2022-04-01T03:18:46Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z) - Localized Flood DetectionWith Minimal Labeled Social Media Data Using
Transfer Learning [3.964047152162558]
We investigate the problem of localized flood detection using the social sensing model (Twitter)
This study can immensely help in providing the flood-related updates and notifications to the city officials for emergency decision making, rescue operations, and early warnings, etc.
arXiv Detail & Related papers (2020-02-10T20:17:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.