Mesh deformation-based single-view 3D reconstruction of thin eyeglasses frames with differentiable rendering
- URL: http://arxiv.org/abs/2408.05402v1
- Date: Sat, 10 Aug 2024 01:40:57 GMT
- Title: Mesh deformation-based single-view 3D reconstruction of thin eyeglasses frames with differentiable rendering
- Authors: Fan Zhang, Ziyue Ji, Weiguang Kang, Weiqing Li, Zhiyong Su,
- Abstract summary: We propose the first mesh deformation-based reconstruction framework for recovering high-precision 3D full-frame eyeglasses models from a single RGB image.
Experimental results on both the synthetic dataset and real images demonstrate the effectiveness of the proposed algorithm.
- Score: 6.693246356011004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the support of Virtual Reality (VR) and Augmented Reality (AR) technologies, the 3D virtual eyeglasses try-on application is well on its way to becoming a new trending solution that offers a "try on" option to select the perfect pair of eyeglasses at the comfort of your own home. Reconstructing eyeglasses frames from a single image with traditional depth and image-based methods is extremely difficult due to their unique characteristics such as lack of sufficient texture features, thin elements, and severe self-occlusions. In this paper, we propose the first mesh deformation-based reconstruction framework for recovering high-precision 3D full-frame eyeglasses models from a single RGB image, leveraging prior and domain-specific knowledge. Specifically, based on the construction of a synthetic eyeglasses frame dataset, we first define a class-specific eyeglasses frame template with pre-defined keypoints. Then, given an input eyeglasses frame image with thin structure and few texture features, we design a keypoint detector and refiner to detect predefined keypoints in a coarse-to-fine manner to estimate the camera pose accurately. After that, using differentiable rendering, we propose a novel optimization approach for producing correct geometry by progressively performing free-form deformation (FFD) on the template mesh. We define a series of loss functions to enforce consistency between the rendered result and the corresponding RGB input, utilizing constraints from inherent structure, silhouettes, keypoints, per-pixel shading information, and so on. Experimental results on both the synthetic dataset and real images demonstrate the effectiveness of the proposed algorithm.
Related papers
- InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars [40.10906393484584]
We propose a novel framework that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames.
Our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces.
The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks.
arXiv Detail & Related papers (2023-12-03T18:59:15Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
arXiv Detail & Related papers (2023-11-20T15:03:56Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
We propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images.
Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering.
A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model.
arXiv Detail & Related papers (2023-11-01T11:46:15Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.