Distributing quantum correlations through local operations and classical resources
- URL: http://arxiv.org/abs/2408.05490v2
- Date: Mon, 2 Sep 2024 11:27:41 GMT
- Title: Distributing quantum correlations through local operations and classical resources
- Authors: Adam G. Hawkins, Hannah McAleese, Mauro Paternostro,
- Abstract summary: We present a robust, physically-motivated protocol by which global quantum correlations can be distributed to quantum memories.
In addition to this, said distribution is measurement-outcome independent, and the distribution is done using only bilocal unitary operations and projective measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributing quantum correlations to each node of a network is a key aspect of quantum networking. Here, we present a robust, physically-motivated protocol by which global quantum correlations, as characterised by the discord, can be distributed to quantum memories using a mixed state of information carriers which possess only classical correlations. In addition to this, said distribution is measurement-outcome independent, and the distribution is done using only bilocal unitary operations and projective measurements. We also explore the scaling of this protocol for larger networks and illustrate the structure of the quantum correlations, showing its dependence on the local operations performed.
Related papers
- eQMARL: Entangled Quantum Multi-Agent Reinforcement Learning for Distributed Cooperation over Quantum Channels [98.314893665023]
Quantum computing has sparked a potential synergy between quantum entanglement and cooperation in multi-agent environments.
Current state-of-the-art quantum MARL (QMARL) implementations rely on classical information sharing.
eQMARL is a distributed actor-critic framework that facilitates cooperation over a quantum channel.
arXiv Detail & Related papers (2024-05-24T18:43:05Z) - Quantum Networks Enhanced by Distributed Quantum Memories [0.0]
We show that a network-wide synergistic usage of quantum memories distributed in a quantum communication network offers a fundamental advantage.
We first map the problem of quantum communication with local usage of memories into a classical continuum percolation model.
This improved mapping can be formulated in terms of graph-merging rules, analogous to the decimation rules of the renormalization group treatment of disordered quantum magnets.
arXiv Detail & Related papers (2024-03-25T02:16:25Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Machine classification of quantum correlations for entanglement
distribution networks [0.0]
The paper suggest employing machine learning for resource-efficient classification of quantum correlations in entanglement distribution networks.
Artificial neural networks (ANN) are utilized to classify quantum correlations based on collective measurements conducted in the geometry of entanglement swapping.
arXiv Detail & Related papers (2024-02-14T14:46:10Z) - Statistical properties and repetition rates for a quantum network with
geographical distribution of nodes [0.49157446832511503]
We build upon recent models for quantum networks based on optical fibers by considering the effect of a non-uniform distribution of nodes.
We employ it to compute the repetition rates for entanglement swapping, an essential protocol for quantum communication based on quantum repeaters.
arXiv Detail & Related papers (2023-12-14T17:01:21Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.