論文の概要: Utilizing Large Language Models to Optimize the Detection and Explainability of Phishing Websites
- arxiv url: http://arxiv.org/abs/2408.05667v1
- Date: Sun, 11 Aug 2024 01:14:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 16:07:35.552248
- Title: Utilizing Large Language Models to Optimize the Detection and Explainability of Phishing Websites
- Title(参考訳): 大規模言語モデルを用いたフィッシングサイトの検出と説明可能性の最適化
- Authors: Sayak Saha Roy, Shirin Nilizadeh,
- Abstract要約: PhishLangはオープンソースの軽量なLarge Language Model(LLM)で、Webサイトのコンテキスト分析を通じてWebサイトの検出をフィッシングする。
3.5ヶ月にわたるテスト期間において、PhishLangはおよそ26KのフィッシングURLを特定したが、その多くが人気のアンチフィッシングブロックリストによって検出されなかった。
我々はPhishLangとGPT-3.5 Turboを統合して、Webサイトをフィッシングとマークしたさまざまな機能に関するコンテキスト情報を提供する、テキスト説明可能なブロッキング警告を作成する。
- 参考スコア(独自算出の注目度): 3.014087730099599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce PhishLang, an open-source, lightweight Large Language Model (LLM) specifically designed for phishing website detection through contextual analysis of the website. Unlike traditional heuristic or machine learning models that rely on static features and struggle to adapt to new threats and deep learning models that are computationally intensive, our model utilizes the advanced language processing capabilities of LLMs to learn granular features that are characteristic of phishing attacks. Furthermore, PhishLang operates with minimal data preprocessing and offers performance comparable to leading deep learning tools, while being significantly faster and less resource-intensive. Over a 3.5-month testing period, PhishLang successfully identified approximately 26K phishing URLs, many of which were undetected by popular antiphishing blocklists, thus demonstrating its potential to aid current detection measures. We also evaluate PhishLang against several realistic adversarial attacks and develop six patches that make it very robust against such threats. Furthermore, we integrate PhishLang with GPT-3.5 Turbo to create \textit{explainable blocklisting} - warnings that provide users with contextual information about different features that led to a website being marked as phishing. Finally, we have open-sourced the PhishLang framework and developed a Chromium-based browser extension and URL scanner website, which implement explainable warnings for end-users.
- Abstract(参考訳): 本稿では,PhishLangについて紹介する。PhishLangはオープンソースの軽量大言語モデル(LLM)で,Webサイトのコンテキスト解析を通じてWebサイトの検出をフィッシングするように設計されている。
静的な特徴に依存し、計算集約的な新たな脅威やディープラーニングモデルへの適応に苦慮する従来のヒューリスティックあるいは機械学習モデルとは異なり、我々のモデルは、LLMの高度な言語処理機能を利用して、フィッシング攻撃の特徴となるきめ細かい特徴を学習する。
さらに、PhishLangは最小限のデータ前処理で動作し、主要なディープラーニングツールに匹敵するパフォーマンスを提供する。
3.5ヶ月にわたるテスト期間において、PhishLangは、約26KのフィッシングURLの特定に成功した。
また、いくつかの現実的な敵攻撃に対してPhishLangを評価し、そのような脅威に対して非常に堅牢な6つのパッチを開発しました。
さらに,PhishLang と GPT-3.5 Turbo を統合して \textit{Explainable blocklisting} を生成する。
最後に、PhishLangフレームワークをオープンソース化し、ChromiumベースのブラウザエクステンションとURLスキャナWebサイトを開発しました。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - PhishAgent: A Robust Multimodal Agent for Phishing Webpage Detection [26.106113544525545]
フィッシング攻撃はオンラインセキュリティにとって大きな脅威であり、ユーザーの脆弱性を利用して機密情報を盗む。
フィッシングに対処する様々な方法が開発されており、それぞれ異なるレベルの精度で行われているが、それらもまた顕著な限界に遭遇している。
本研究では,多モーダル大規模言語モデル(MLLM)とオンラインおよびオフラインの知識ベースを統合した多モーダルエージェントであるPhishAgentを紹介する。
この組み合わせは、ブランドの認知とリコールを強化する幅広いブランドカバレッジにつながる。
論文 参考訳(メタデータ) (2024-08-20T11:14:21Z) - From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks [0.8050163120218178]
フィッシング攻撃は、ユーザーを騙して機密情報を盗もうとする。
現在のフィッシングWebページ検出ソリューションは、敵攻撃に対して脆弱である。
我々は,多様なフィッシング機能を正当なWebページに埋め込むことで,逆フィッシングWebページを生成するツールを開発した。
論文 参考訳(メタデータ) (2024-07-29T18:21:34Z) - PhishNet: A Phishing Website Detection Tool using XGBoost [1.777434178384403]
PhisNetは最先端のWebアプリケーションで、高度な機械学習を使ってフィッシングサイトを検出するように設計されている。
個人や組織が堅牢なAIフレームワークを通じてフィッシング攻撃を特定し予防することを目的としている。
論文 参考訳(メタデータ) (2024-06-29T21:31:13Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFMは、非常に大きな基礎モデルに適した、新しいバックドア攻撃である。
提案手法では,モデルパラメータのごく一部のみを微調整することでバックドアを注入する。
広範に使われている大規模GPTモデルに対して,TrojFMが効果的なバックドアアタックを起動できることを実証する。
論文 参考訳(メタデータ) (2024-05-27T03:10:57Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - From Chatbots to PhishBots? -- Preventing Phishing scams created using
ChatGPT, Google Bard and Claude [3.7741995290294943]
本研究では,一般的な4つの大規模言語モデルを用いてフィッシング攻撃を発生させる可能性について検討する。
我々は、悪意のあるプロンプトの早期検出に使用できるBERTベースの自動検出ツールを構築した。
我々のモデルは4つの商用LCM間で転送可能であり、フィッシングサイトプロンプトの平均精度は96%、フィッシングメールプロンプトの平均精度は94%である。
論文 参考訳(メタデータ) (2023-10-29T22:52:40Z) - Fishing for User Data in Large-Batch Federated Learning via Gradient
Magnification [65.33308059737506]
フェデレートラーニング(FL)は、プライバシーと効率性の約束により急速に人気が高まっている。
これまでの作業では、勾配更新からユーザデータを復元することで、FLパイプラインのプライバシの脆弱性が露呈されていた。
我々は、任意のサイズのバッチで運用するために、既存の攻撃を劇的に高める新しい戦略を導入する。
論文 参考訳(メタデータ) (2022-02-01T17:26:11Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。