論文の概要: RTF-Q: Unsupervised domain adaptation based retraining-free quantization network
- arxiv url: http://arxiv.org/abs/2408.05752v1
- Date: Sun, 11 Aug 2024 11:53:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:37:52.304117
- Title: RTF-Q: Unsupervised domain adaptation based retraining-free quantization network
- Title(参考訳): RTF-Q:unsupervised domain adaptation based retraining-free Quantization network
- Authors: Nanyang Du, Chen Tang, Yuan Meng, Zhi Wang,
- Abstract要約: 教師なしドメイン適応に基づくReTraining-Free Quantized (RTF-Q)ネットワークを導入する。
我々は量子化学習を使用し、全精度ネットワークのビットOPを少なくとも1/16削減する。
実験の結果,UDAタスクにおけるSOTA法と同等の分類精度が得られた。
- 参考スコア(独自算出の注目度): 15.499564396513101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing unsupervised domain adaptation on resource-constrained edge devices is a significant task. Although existing research allows edge devices to use subnets with different computational budgets for inference, they often require expensive pre-training and do not consider the issues of parameter precision redundancy in the model, which is not conducive to the deployment of the model on edge devices. In this paper, we introduce a ReTraining-Free Quantized (RTF-Q) network based on unsupervised domain adaptation, featuring quantized subnets of varying computational costs that can operate on devices with dynamically changing computation budgets. Our network has three switchable dimensions: width (number of channels), input resolution, and quantization bit-width. Specifically, we choose subnet dimensions that have minimal impact on network performance and then directly load the official weight files without requiring expensive and time-consuming pre-training on Imagenet-1K. To further reduce the network's computational load and memory usage, we use quantization-aware training, reducing the BitOPs of full-precision networks by at least 1/16. We propose a training method called SandwichQ for multiple quantization bit widths, which can efficiently train multiple quantization subnets. By training in multiple quantization bit-width spaces simultaneously and using the proposed SandwichQ rule, we achieve better network performance compared to using a single quantization bit-width alone. Experimental results show that our method achieves classification accuracy comparable to SOTA methods on various UDA tasks, significantly reducing network size and computational overhead. Code will be available at https://github.com/dunanyang/RTF-Q.
- Abstract(参考訳): リソース制約のあるエッジデバイス上で、教師なしのドメイン適応を実行することは重要なタスクである。
既存の研究では、エッジデバイスは推論のために異なる計算予算を持つサブネットを使用することができるが、しばしば高価な事前トレーニングを必要とし、モデルのパラメータ精度の冗長性の問題を考慮しない。
本稿では,非教師付きドメイン適応に基づくReTraining-Free Quantized (RTF-Q)ネットワークを提案する。
我々のネットワークは、幅(チャンネル数)、入力解像度、量子化ビット幅の3つの切替可能な次元を持っている。
具体的には、ネットワーク性能に最小限の影響を与えるサブネットディメンションを選択し、Imagenet-1Kでコストと時間を要する事前トレーニングを必要とせずに、公式の重みファイルを直接ロードする。
ネットワークの計算負荷とメモリ使用量をさらに削減するために、量子化対応トレーニングを使用し、全精度ネットワークのビットOPを少なくとも1/16削減する。
我々は、複数の量子化ビット幅に対するサンドウィッチQと呼ばれるトレーニング手法を提案し、複数の量子化サブネットを効率的に訓練することができる。
複数の量子化ビット幅空間を同時にトレーニングし、提案したSandwichQルールを用いることで、単一量子化ビット幅のみを使用する場合と比較してネットワーク性能が向上する。
実験結果から,UDAタスクにおけるSOTA法に匹敵する分類精度を実現し,ネットワークサイズや計算オーバーヘッドを大幅に低減した。
コードはhttps://github.com/dunanyang/RTF-Q.comで入手できる。
関連論文リスト
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
本稿では、トレーニング中に、トレーニング済みのネットワークを適用することなく機能するディープニューラルネットワークのユニット/フィルタとレイヤプルーニングを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,3つのパラメータのみを用いて,層対単位/フィルタプルーニングと計算量対パラメータ複雑性のバランスを保ちながら,学習精度とプルーニングレベルを最適に交換する。
論文 参考訳(メタデータ) (2024-11-14T02:00:22Z) - AdaQAT: Adaptive Bit-Width Quantization-Aware Training [0.873811641236639]
大規模ディープニューラルネットワーク(DNN)は多くのアプリケーションシナリオで大きな成功を収めています。
モデル量子化は、デプロイメントの制約に対処する一般的なアプローチであるが、最適化されたビット幅の探索は困難である。
AdaQAT(Adaptive Bit-Width Quantization Aware Training)は,学習中のビット幅を自動的に最適化し,より効率的な推論を行う学習手法である。
論文 参考訳(メタデータ) (2024-04-22T09:23:56Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Efficient Controllable Multi-Task Architectures [85.76598445904374]
本稿では,共有エンコーダとタスク固有デコーダからなるマルチタスクモデルを提案する。
我々のキーとなる考え方は、タスク固有のデコーダの容量を変化させ、計算コストの総和を制御し、タスクの重要度を制御することである。
これにより、与えられた予算に対してより強力なエンコーダを許可し、計算コストの制御を高め、高品質のスリム化サブアーキテクチャを提供することにより、全体的な精度を向上させる。
論文 参考訳(メタデータ) (2023-08-22T19:09:56Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
深層ニューラルネットワークの量子化は、推論コストを低減するための有望なアプローチである。
ネットワークの重みと活性化分布の知識を用いて量子化間隔(離散値)を学習する新しいフレームワークを提案する。
提案手法は,ネットワークのパラメータを同時に推定し,量子化過程におけるプルーニング比を柔軟に調整する。
論文 参考訳(メタデータ) (2022-02-24T23:33:47Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。