論文の概要: RTF-Q: Efficient Unsupervised Domain Adaptation with Retraining-free Quantization
- arxiv url: http://arxiv.org/abs/2408.05752v2
- Date: Fri, 13 Sep 2024 12:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 22:38:12.943701
- Title: RTF-Q: Efficient Unsupervised Domain Adaptation with Retraining-free Quantization
- Title(参考訳): RTF-Q:Retraining-free Quantizationによる効率的な教師なしドメイン適応
- Authors: Nanyang Du, Chen Tang, Yuxiao Jiang, Yuan Meng, Zhi Wang,
- Abstract要約: ReTraining-Free Quantization (RTF-Q) を用いた効率的な非教師なし領域適応法を提案する。
提案手法では,計算コストの異なる低精度量子化アーキテクチャを用い,動的予算を持つデバイスに適用する。
提案するネットワークは,3つのベンチマークにおける最先端手法との競合精度を実証する。
- 参考スコア(独自算出の注目度): 14.447148108341688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing unsupervised domain adaptation on resource-constrained edge devices is challenging. Existing research typically adopts architecture optimization (e.g., designing slimmable networks) but requires expensive training costs. Moreover, it does not consider the considerable precision redundancy of parameters and activations. To address these limitations, we propose efficient unsupervised domain adaptation with ReTraining-Free Quantization (RTF-Q). Our approach uses low-precision quantization architectures with varying computational costs, adapting to devices with dynamic computation budgets. We subtly configure subnet dimensions and leverage weight-sharing to optimize multiple architectures within a single set of weights, enabling the use of pre-trained models from open-source repositories. Additionally, we introduce multi-bitwidth joint training and the SandwichQ rule, both of which are effective in handling multiple quantization bit-widths across subnets. Experimental results demonstrate that our network achieves competitive accuracy with state-of-the-art methods across three benchmarks while significantly reducing memory and computational costs.
- Abstract(参考訳): リソース制約のあるエッジデバイス上で、教師なしのドメイン適応を実行することは困難である。
既存の研究はアーキテクチャ最適化(例えば、スリムなネットワークを設計する)を採用するが、高価なトレーニングコストを必要とする。
さらに、パラメータとアクティベーションのかなりの精度の冗長性を考慮しない。
これらの制約に対処するため,ReTraining-Free Quantization (RTF-Q) を用いた非教師なし領域適応法を提案する。
提案手法では,計算コストの異なる低精度量子化アーキテクチャを用い,動的計算予算を持つデバイスに適用する。
サブネットの次元を微妙に設定し、ウェイトシェアリングを利用して、1セットの重みで複数のアーキテクチャを最適化し、オープンソースのリポジトリから事前トレーニングされたモデルを使用することを可能にします。
さらに、サブネット間の多重量子化ビット幅を扱うのに有効なマルチビット幅ジョイントトレーニングとサンドウィッチQルールを導入する。
実験により,本ネットワークは3つのベンチマークにおける最先端手法との競合精度を実現し,メモリコストと計算コストを大幅に削減した。
関連論文リスト
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
本稿では、トレーニング中に、トレーニング済みのネットワークを適用することなく機能するディープニューラルネットワークのユニット/フィルタとレイヤプルーニングを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,3つのパラメータのみを用いて,層対単位/フィルタプルーニングと計算量対パラメータ複雑性のバランスを保ちながら,学習精度とプルーニングレベルを最適に交換する。
論文 参考訳(メタデータ) (2024-11-14T02:00:22Z) - AdaQAT: Adaptive Bit-Width Quantization-Aware Training [0.873811641236639]
大規模ディープニューラルネットワーク(DNN)は多くのアプリケーションシナリオで大きな成功を収めています。
モデル量子化は、デプロイメントの制約に対処する一般的なアプローチであるが、最適化されたビット幅の探索は困難である。
AdaQAT(Adaptive Bit-Width Quantization Aware Training)は,学習中のビット幅を自動的に最適化し,より効率的な推論を行う学習手法である。
論文 参考訳(メタデータ) (2024-04-22T09:23:56Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Efficient Controllable Multi-Task Architectures [85.76598445904374]
本稿では,共有エンコーダとタスク固有デコーダからなるマルチタスクモデルを提案する。
我々のキーとなる考え方は、タスク固有のデコーダの容量を変化させ、計算コストの総和を制御し、タスクの重要度を制御することである。
これにより、与えられた予算に対してより強力なエンコーダを許可し、計算コストの制御を高め、高品質のスリム化サブアーキテクチャを提供することにより、全体的な精度を向上させる。
論文 参考訳(メタデータ) (2023-08-22T19:09:56Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
深層ニューラルネットワークの量子化は、推論コストを低減するための有望なアプローチである。
ネットワークの重みと活性化分布の知識を用いて量子化間隔(離散値)を学習する新しいフレームワークを提案する。
提案手法は,ネットワークのパラメータを同時に推定し,量子化過程におけるプルーニング比を柔軟に調整する。
論文 参考訳(メタデータ) (2022-02-24T23:33:47Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。