A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- URL: http://arxiv.org/abs/2408.05846v2
- Date: Tue, 13 Aug 2024 14:33:36 GMT
- Title: A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- Authors: Jialin Liu, Diansheng Liao,
- Abstract summary: We report a universal fully flexible neuromorphic tactile perception system with strong compatibility.
Signal in our system is transmitted as pulses and processed as threshold information.
Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code.
- Score: 2.4151287776241768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing the new generation information processing system by mimicking biological nervous system is a feasible way for implement of high-efficient intelligent sensing device and bionic robot. However, most biological nervous system, especially the tactile system, have various powerful functions. This is a big challenge for bionic system design. Here we report a universal fully flexible neuromorphic tactile perception system with strong compatibility and a multithreshold signal processing strategy. Like nervous system, signal in our system is transmitted as pulses and processed as threshold information. For feasibility verification, recognition of three different type pressure signals (continuous changing signal, Morse code signal and symbol pattern) is tested respectively. Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code. Comparing to conventional system, consumption of our system significantly decreases in a same recognition task. Meanwhile, we give the detail introduction and demonstration of our system universality.
Related papers
- A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis [2.355460994057843]
This study proposes a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types.<n>Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions.<n>The architecture requires 130 MB of memory and processes each sample in 10 ms, suggesting suitability for deployment on low-end or wearable devices.
arXiv Detail & Related papers (2025-07-16T21:38:10Z) - Machine-Learning-Powered Neural Interfaces for Smart Prosthetics and Diagnostics [3.975510977962636]
We review recent advancements in AI-driven decoding algorithms and energy-efficient System-on-Chip platforms for next-generation miniaturized neural devices.<n>These innovations highlight the potential for developing intelligent neural interfaces, addressing critical challenges in scalability, reliability, interpretability, and user adaptability.
arXiv Detail & Related papers (2025-05-05T09:49:13Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
arXiv Detail & Related papers (2024-11-04T18:38:50Z) - Ternary Spike-based Neuromorphic Signal Processing System [12.32177207099149]
We take advantage of spiking neural networks (SNNs) and quantization technologies to develop an energy-efficient and lightweight neuromorphic signal processing system.
Our system is characterized by two principal innovations: a threshold-adaptive encoding (TAE) method and a quantized ternary SNN (QT-SNN)
The efficiency and efficacy of the proposed system highlight its potential as a promising avenue for energy-efficient signal processing.
arXiv Detail & Related papers (2024-07-07T09:32:19Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
We present Neuro-BERT, a self-supervised pre-training framework of neurological signals based on masked autoencoding in the Fourier domain.
We propose a novel pre-training task dubbed Fourier Inversion Prediction (FIP), which randomly masks out a portion of the input signal and then predicts the missing information.
By evaluating our method on several benchmark datasets, we show that Neuro-BERT improves downstream neurological-related tasks by a large margin.
arXiv Detail & Related papers (2022-04-20T16:48:18Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
We use neural inference to mediate between the neural System 1 and the logical System 2.
Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.
arXiv Detail & Related papers (2021-07-06T17:59:49Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
We introduce a generic and scalable method to learn latent representations of indirectly observed dynamical systems.
We achieve state-of-the-art performances on systems observed directly from raw images.
arXiv Detail & Related papers (2021-06-22T12:30:18Z) - Gesture Similarity Analysis on Event Data Using a Hybrid Guided
Variational Auto Encoder [3.1148846501645084]
We propose a neuromorphic gesture analysis system which naturally declutters the background and analyzes gestures at high temporal resolution.
Our results show that the features learned by the VAE provides a similarity measure capable of clustering and pseudo labeling of new gestures.
arXiv Detail & Related papers (2021-03-31T23:58:34Z) - A Signal-Centric Perspective on the Evolution of Symbolic Communication [4.447467536572625]
We show how organisms can evolve to define a shared set of symbols with unique interpretable meaning.
We characterize signal decoding as either regression or classification, with limited and unlimited signal amplitude.
In various settings, we observe agents evolving to share a dictionary of symbols, with each symbol spontaneously associated to a 1-D unique signal.
arXiv Detail & Related papers (2021-03-31T08:05:01Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - End-to-End Memristive HTM System for Pattern Recognition and Sequence
Prediction [4.932130498861988]
A neuromorphic system that processes-temporal information on the edge is proposed.
The proposed architecture is benchmarked to predict on real-world streaming data.
System offers 3.46X reduction in latency and 77.02X reduction in power consumption.
arXiv Detail & Related papers (2020-06-22T01:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.