A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- URL: http://arxiv.org/abs/2408.05846v2
- Date: Tue, 13 Aug 2024 14:33:36 GMT
- Title: A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- Authors: Jialin Liu, Diansheng Liao,
- Abstract summary: We report a universal fully flexible neuromorphic tactile perception system with strong compatibility.
Signal in our system is transmitted as pulses and processed as threshold information.
Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code.
- Score: 2.4151287776241768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing the new generation information processing system by mimicking biological nervous system is a feasible way for implement of high-efficient intelligent sensing device and bionic robot. However, most biological nervous system, especially the tactile system, have various powerful functions. This is a big challenge for bionic system design. Here we report a universal fully flexible neuromorphic tactile perception system with strong compatibility and a multithreshold signal processing strategy. Like nervous system, signal in our system is transmitted as pulses and processed as threshold information. For feasibility verification, recognition of three different type pressure signals (continuous changing signal, Morse code signal and symbol pattern) is tested respectively. Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code. Comparing to conventional system, consumption of our system significantly decreases in a same recognition task. Meanwhile, we give the detail introduction and demonstration of our system universality.
Related papers
- Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
arXiv Detail & Related papers (2024-11-04T18:38:50Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
We present Neuro-BERT, a self-supervised pre-training framework of neurological signals based on masked autoencoding in the Fourier domain.
We propose a novel pre-training task dubbed Fourier Inversion Prediction (FIP), which randomly masks out a portion of the input signal and then predicts the missing information.
By evaluating our method on several benchmark datasets, we show that Neuro-BERT improves downstream neurological-related tasks by a large margin.
arXiv Detail & Related papers (2022-04-20T16:48:18Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
We use neural inference to mediate between the neural System 1 and the logical System 2.
Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.
arXiv Detail & Related papers (2021-07-06T17:59:49Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
We introduce a generic and scalable method to learn latent representations of indirectly observed dynamical systems.
We achieve state-of-the-art performances on systems observed directly from raw images.
arXiv Detail & Related papers (2021-06-22T12:30:18Z) - Gesture Similarity Analysis on Event Data Using a Hybrid Guided
Variational Auto Encoder [3.1148846501645084]
We propose a neuromorphic gesture analysis system which naturally declutters the background and analyzes gestures at high temporal resolution.
Our results show that the features learned by the VAE provides a similarity measure capable of clustering and pseudo labeling of new gestures.
arXiv Detail & Related papers (2021-03-31T23:58:34Z) - A Signal-Centric Perspective on the Evolution of Symbolic Communication [4.447467536572625]
We show how organisms can evolve to define a shared set of symbols with unique interpretable meaning.
We characterize signal decoding as either regression or classification, with limited and unlimited signal amplitude.
In various settings, we observe agents evolving to share a dictionary of symbols, with each symbol spontaneously associated to a 1-D unique signal.
arXiv Detail & Related papers (2021-03-31T08:05:01Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.