論文の概要: Boosting Adverse Weather Crowd Counting via Multi-queue Contrastive Learning
- arxiv url: http://arxiv.org/abs/2408.05956v2
- Date: Sat, 26 Oct 2024 06:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 11:49:24.862009
- Title: Boosting Adverse Weather Crowd Counting via Multi-queue Contrastive Learning
- Title(参考訳): マルチキューコントラスト学習による逆気象群カウントの強化
- Authors: Tianhang Pan, Xiuyi Jia,
- Abstract要約: 本研究では,悪天候下でのモデルの堅牢性を高めるために,2段階の群集カウント手法を提案する。
第1段階では、気象クラス不均衡の問題に対処するために、マルチキューのMoCoコントラスト学習戦略を導入する。
第2段階では、コントラスト学習の指導の下で表現を洗練し、天気予知表現を通常の気象領域に変換することを提案する。
- 参考スコア(独自算出の注目度): 8.692139673789555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, most crowd counting methods have outstanding performance under normal weather conditions. However, they often struggle to maintain their performance in extreme and adverse weather conditions due to significant differences in the domain and a lack of adverse weather images for training. To address this issue and enhance the model's robustness in adverse weather, we propose a two-stage crowd counting method. Specifically, in the first stage, we introduce a multi-queue MoCo contrastive learning strategy to tackle the problem of weather class imbalance. This strategy facilitates the learning of weather-aware representations by the model. In the second stage, we propose to refine the representations under the guidance of contrastive learning, enabling the conversion of the weather-aware representations to the normal weather domain. While significantly improving the robustness, our method only marginally increases the weight of the model. In addition, we also create a new synthetic adverse weather dataset. Extensive experimental results show that our method achieves competitive performance.
- Abstract(参考訳): 現在、ほとんどの群集カウント法は、通常の気象条件下では優れた性能を保っている。
しかし、ドメインの大幅な違いとトレーニング用の悪天候画像の欠如により、極端で悪天候条件下でのパフォーマンスを維持するのに苦労することが多い。
この問題に対処し、悪天候下でのモデルの堅牢性を高めるために、2段階の群集カウント法を提案する。
特に第1段階では、気象クラス不均衡の問題に対処するために、マルチキューのMoCoコントラスト学習戦略を導入する。
この戦略は、モデルによる気象認識表現の学習を促進する。
第2段階では、コントラスト学習の指導の下で表現を洗練し、天気予知表現を通常の気象領域に変換することを提案する。
頑健性は著しく向上するが,本手法はモデルの重量をわずかに増加させるだけである。
また、新しい合成悪天候データセットも作成する。
実験結果から,本手法は競争性能を向上することが示された。
関連論文リスト
- WeatherProof: Leveraging Language Guidance for Semantic Segmentation in Adverse Weather [8.902960772665482]
本研究では,悪天候下で撮影された画像からセマンティックセグメンテーションマップを推定する方法を提案する。
まず、雨や霧、雪などの気象条件によって劣化した画像の既存のモデルを調べる。
気象画像の正当性を考慮した最初のセマンティックセマンティックセグメンテーションデータセットであるWeatherProofを提案する。
論文 参考訳(メタデータ) (2024-03-21T22:46:27Z) - Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for
Video Adverse Weather Removal [53.15046196592023]
ビデオの悪天候除去におけるテスト時間適応について紹介する。
本稿では,テスト時間適応を反復拡散逆プロセスに統合する最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-12T14:21:30Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - WeatherProof: A Paired-Dataset Approach to Semantic Segmentation in
Adverse Weather [9.619700283574533]
本稿では,悪天候条件下での画像の性能向上につながる一般的なペア学習手法を提案する。
我々は、正確な晴天と悪天候画像のペアで、最初のセマンティックセグメンテーションデータセットを作成する。
その結果,これら2組の晴天フレームと悪天候フレームのトレーニングにより,悪天候データの性能が向上することが判明した。
論文 参考訳(メタデータ) (2023-12-15T04:57:54Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
本稿では,標準変圧器バックボーンの変更を最小限に抑えつつ,気象予報の最先端性能であるStormerを紹介する。
Stormerの中核はランダムな予測目標であり、様々な時間間隔で天気のダイナミクスを予測するためにモデルを訓練する。
ウェザーベンチ2では、ストーマーは短距離から中距離の予測で競争力を発揮し、現在の手法を7日を超えて上回っている。
論文 参考訳(メタデータ) (2023-12-06T19:46:06Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - MetaWeather: Few-Shot Weather-Degraded Image Restoration [17.63266150036311]
メタウェザー(MetaWeather)は、多様な新しい気象条件を単一の統一モデルで処理できる普遍的なアプローチである。
メタウェザーは未確認の気象条件に適応でき、最先端のマルチウェザー画像復元法よりも優れることを示す。
論文 参考訳(メタデータ) (2023-08-28T06:25:40Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
ネットワークが異なる気象条件を適応的に処理できるようにするために,CLIP埋め込みモジュールを提案する。
このモジュールは、CLIP画像エンコーダによって抽出されたサンプル特定気象と、パラメータセットによって学習された分布特定情報を統合する。
論文 参考訳(メタデータ) (2023-06-15T10:06:13Z) - Counting Crowds in Bad Weather [68.50690406143173]
本研究では,悪天候シナリオにおいて,ロバストな群集カウント手法を提案する。
モデルでは,外見のバリエーションが大きいことを考慮し,効果的な特徴と適応的なクエリを学習する。
実験の結果,提案アルゴリズムは,ベンチマークデータセット上で異なる気象条件下での群集のカウントに有効であることが示唆された。
論文 参考訳(メタデータ) (2023-06-02T00:00:09Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
本研究では,拡散モデルに基づく最初の実世界の画像デライニングパラダイムであるRainDiffを提案する。
安定的で非敵対的なサイクル一貫性のあるアーキテクチャを導入し、トレーニングをエンドツーエンドで行えます。
また,複数の降雨の先行学習によって条件付けられた拡散生成過程を通じて,所望の出力を洗練する劣化条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-01-23T13:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。