論文の概要: Peaking into the Black-box: Prediction Intervals Give Insight into Data-driven Quadrotor Model Reliability
- arxiv url: http://arxiv.org/abs/2408.06036v1
- Date: Mon, 12 Aug 2024 09:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 14:25:27.700585
- Title: Peaking into the Black-box: Prediction Intervals Give Insight into Data-driven Quadrotor Model Reliability
- Title(参考訳): ブラックボックスに侵入する:予測インターバルはデータ駆動型クアドロレータモデルの信頼性に洞察を与える
- Authors: Jasper van Beers, Coen de Visser,
- Abstract要約: 予測間隔(PI)は、モデルの予測の一貫性と精度に関する洞察を提供するために用いられる。
本稿では、ブートストラップとニューラルネットワーク(ANN)の4次空力モデルに対するそのようなPIを推定する。
ANNをベースとしたPIは外挿時にかなり広くなり、外挿時には一定に保たれたり、縮小したりした。
- 参考スコア(独自算出の注目度): 0.6215404942415159
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ensuring the reliability and validity of data-driven quadrotor model predictions is essential for their accepted and practical use. This is especially true for grey- and black-box models wherein the mapping of inputs to predictions is not transparent and subsequent reliability notoriously difficult to ascertain. Nonetheless, such techniques are frequently and successfully used to identify quadrotor models. Prediction intervals (PIs) may be employed to provide insight into the consistency and accuracy of model predictions. This paper estimates such PIs for polynomial and Artificial Neural Network (ANN) quadrotor aerodynamic models. Two existing ANN PI estimation techniques - the bootstrap method and the quality driven method - are validated numerically for quadrotor aerodynamic models using an existing high-fidelity quadrotor simulation. Quadrotor aerodynamic models are then identified on real quadrotor flight data to demonstrate their utility and explore their sensitivity to model interpolation and extrapolation. It is found that the ANN-based PIs widen considerably when extrapolating and remain constant, or shrink, when interpolating. While this behaviour also occurs for the polynomial PIs, it is of lower magnitude. The estimated PIs establish probabilistic bounds within which the quadrotor model outputs will likely lie, subject to modelling and measurement uncertainties that are reflected through the PI widths.
- Abstract(参考訳): データ駆動型二次モデル予測の信頼性と妥当性の確保は、その受容と実用化に不可欠である。
これは特にグレーボックスやブラックボックスモデルでは、入力の予測へのマッピングが透明ではなく、その後の信頼性の確認が困難であることが知られている。
それでも、そのような手法は頻繁に使われ、四元数モデルの同定に成功している。
予測間隔(PI)は、モデル予測の一貫性と精度に関する洞察を提供するために用いられる。
本稿では,多項式とニューラルネットワーク(ANN)の4次空力モデルに対するそのようなPIを推定する。
ANN PI推定手法としてブートストラップ法と品質駆動法という2つの手法が,既存の高忠実度四重項シミュレーションを用いて,四重項空力モデルに対して数値的に検証されている。
その後、クアドロターの空力モデルが実際のクアドロターの飛行データに基づいて同定され、その実用性を実証し、モデルの補間と外挿に対する感度を探索する。
ANNをベースとしたPIは外挿時にかなり広くなり、外挿時には一定に保たれたり、縮小したりした。
この挙動は多項式PIにも起こるが、等級は低い。
推定されたPIは、PI幅を通して反射されるモデリングおよび測定の不確実性によって、二次モデル出力が嘘をつく可能性のある確率的境界を確立する。
関連論文リスト
- Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model [45.45700202300292]
CaPaintは2段階のプロセスで因果推論能力を備えたデータとエンドウモデルの因果領域を特定することを目的としている。
微調整未条件拡散確率モデル(DDPM)を生成前として, 環境成分として定義されたマスクを埋め込む。
5つの実世界のSTベンチマークで実施された実験は、CaPaintの概念の統合により、モデルが4.3%から77.3%の改善を達成できることを示した。
論文 参考訳(メタデータ) (2024-09-29T08:18:50Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)という新しいモデルを提案する。
GRANPには、決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダが含まれている。
我々は,GRANPが最先端の結果を達成し,不確実性を効率的に定量化できることを示す。
論文 参考訳(メタデータ) (2024-04-09T05:51:40Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Context-Aware Generative Models for Prediction of Aircraft Ground Tracks [0.004807514276707785]
軌道予測は航空交通管制官の意思決定を支援する上で重要な役割を果たしている。
従来のTP手法は決定論的で物理学に基づく手法であり、パラメータは世界中で収集された航空機の監視データを用いて校正される。
本研究では、確率論的機械学習を用いて、パイロット行動とATCO意図の未知の効果をモデル化する横型TPの生成法を提案する。
論文 参考訳(メタデータ) (2023-09-26T14:20:09Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
本研究では,将来の車両軌道予測のための深部生成モデルであるEquiDiffを提案する。
EquiDiffは、過去の情報とランダムなガウスノイズを組み込んで将来の軌跡を生成する条件拡散モデルに基づいている。
以上の結果から,EquiDiffは短期予測では他のベースラインモデルよりも優れているが,長期予測では誤差が若干高いことがわかった。
論文 参考訳(メタデータ) (2023-08-12T13:17:09Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Integration of neural network and fuzzy logic decision making compared
with bilayered neural network in the simulation of daily dew point
temperature [0.8808021343665321]
ドウ点温度(DPT)は、データ駆動方式を用いてシミュレートされる。
アーキテクチャのトレーニングには、様々な入力パターン、すなわち、T min、T max、T が使用される。
論文 参考訳(メタデータ) (2022-02-23T14:25:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。