Building Decision Making Models Through Language Model Regime
- URL: http://arxiv.org/abs/2408.06087v1
- Date: Mon, 12 Aug 2024 12:04:14 GMT
- Title: Building Decision Making Models Through Language Model Regime
- Authors: Yu Zhang, Haoxiang Liu, Feijun Jiang, Weihua Luo, Kaifu Zhang,
- Abstract summary: We propose a novel approach for decision making problems leveraging the generalization capabilities of large language models (LLMs)
LLMs demonstrate remarkable success in generalizing across varied language tasks, inspiring a new strategy for training decision making models.
Experiments in e-commerce domains such as advertising and search optimization have shown that LTU approach outperforms traditional supervised learning regimes.
- Score: 17.61892714225144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach for decision making problems leveraging the generalization capabilities of large language models (LLMs). Traditional methods such as expert systems, planning algorithms, and reinforcement learning often exhibit limited generalization, typically requiring the training of new models for each unique task. In contrast, LLMs demonstrate remarkable success in generalizing across varied language tasks, inspiring a new strategy for training decision making models. Our approach, referred to as "Learning then Using" (LTU), entails a two-stage process. Initially, the \textit{learning} phase develops a robust foundational decision making model by integrating diverse knowledge from various domains and decision making contexts. The subsequent \textit{using} phase refines this foundation model for specific decision making scenarios. Distinct from other studies that employ LLMs for decision making through supervised learning, our LTU method embraces a versatile training methodology that combines broad pre-training with targeted fine-tuning. Experiments in e-commerce domains such as advertising and search optimization have shown that LTU approach outperforms traditional supervised learning regimes in decision making capabilities and generalization. The LTU approach is the first practical training architecture for both single-step and multi-step decision making tasks combined with LLMs, which can be applied beyond game and robot domains. It provides a robust and adaptable framework for decision making, enhances the effectiveness and flexibility of various systems in tackling various challenges.
Related papers
- Guided Learning: Lubricating End-to-End Modeling for Multi-stage Decision-making [7.106919452604968]
We propose Guided Learning to enhance end-to-end learning in multi-stage decision-making.
We introduce the concept of a guide'', a function that induces the training of intermediate neural network layers towards some phased goals.
For decision scenarios lacking explicit supervisory labels, we incorporate a utility function that quantifies the reward'' of the throughout decision.
arXiv Detail & Related papers (2024-11-15T06:54:25Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
In this study, we present a novel approach that integrates pre-trained LLMs with a FEM module.
The FEM module evaluates each design and provides essential feedback, guiding the LLMs to continuously learn, plan, generate, and optimize designs without the need for domain-specific training.
Our results reveal that these LLM-based agents can successfully generate truss designs that comply with natural language specifications with a success rate of up to 90%, which varies according to the applied constraints.
arXiv Detail & Related papers (2024-04-26T16:41:24Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Learning to Generalize for Sequential Decision Making [19.075378799280728]
We introduce a teacher-student imitation learning methodology and a means of converting a reinforcement learning model into a natural language understanding model.
We show that models can learn faster and generalize more, leveraging both the imitation learning and the reformulation.
arXiv Detail & Related papers (2020-10-05T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.